MPMalGen: A Framework for Multi-Platform LLM powered Malware
Variant Generation

Md Mohaiminul Islam
mmislam@iastate.edu

Abstract

We extend LLM-based malware variant gener-
ation to multi-platform environments by intro-
ducing platform-specific transformation strate-
gies for Windows and Android malware and
enhanced processing and with a better task in-
structed LLM. Our framework achieves better
AV evasion and acts as a proof of concept work
for a unified framework for multi platform mal-
ware generation at mass scale.

1 Introduction

Malware evolves at a rapid pace, with adversaries
constantly developing new variants to evade de-
tection mechanisms. While antivirus engines and
machine learning-based detectors form the back-
bone of modern defense strategies, attackers em-
ploy code obfuscation, polymorphism, and meta-
morphism to circumvent these protections. Recent
advances in Large Language Models (LLMs) have
demonstrated remarkable capabilities in code gen-
eration and transformation tasks, raising concerns
about their potential misuse in malware develop-
ment. Malware authors with access to source code,
whether through leaks, open-source repositories, or
their own development - face fewer barriers to gen-
erating variants. In this work we want to address
the problem: “How do we alter or change mali-
cious software source code in such a way that it
has a better chance to evade antivirus shields and
detectors while preserving its functional capacity”.
Specifically we want to use the code generation and
small-scale refactoring ability of LLMs to improve
the efficiency, semantic preservation, and evasion
effectiveness of LLM-guided malware variant gen-
eration at the source-code level.

2 Related Work

Prior research on malware variant generation has
explored multiple approaches with varying levels
of automation and effectiveness. Qiao et al. (Qiao

et al., 2022) proposed adversarial malware sam-
ple generation methods based on prototypes of
deep learning detectors, while AMVG (Choi et al.,
2019) introduced an adaptive malware variant gen-
eration framework using machine learning. Ming
et al. (Ming et al., 2017) investigated impeding
behavior-based malware analysis through replace-
ment attacks on malware specifications. Binary-
level transformation techniques such as Malware
Makeover (Lucas et al., 2021) and MalGuise (Ling
et al., 2024) employ adversarial machine learning
and semantic transformation methods to modify
malware binaries for evasion, though these ap-
proaches require extensive iterative optimization.
Notably, Botacin et al. (Botacin, 2023) demon-
strated that LLMs can generate malware code frag-
ments from natural language prompts, but their
approach suffers from low success rates and does
not guarantee functional correctness.

3 Design and Implementation

3.1 Foundational Work: LLMalMorph

LLMalMorph(Akil et al.,, 2025) is a semi-
automated framework that generates variant Win-
dows malware at the source-code level by applying
function-level transformations with a pre-trained
large language model (LLM) and then recompil-
ing the modified projects. The pipeline has two
main modules: (1) the Function Mutator, which
parses each malware file into an abstract syntax
tree, extracts headers, global declarations, and in-
dividual function bodies, and then feeds each se-
lected function plus contextual information to the
LLM via carefully engineered prompts; and (2) the
Variant Synthesizer, which incrementally merges
LLM-modified functions back into the project, re-
compiles after each step, uses a human-in-the-loop
debugging process to fix bugs without altering se-
mantic meaning of the code.The authors evaluate
LLMalMorph on 10 real-world Windows malware

[Function Mutator

Variant Synthesizer

P -
A Prompt S _3_-

fane Generator

L Prompt,
headers, A=

1
globals - :

Stratesy J _

,%
AMalware Malware

Project File

-
Extractor
M

Y 1
AN

] 5 . . ™
h . Merger N Updated Compile hY h
Modified = =5 File Suecess
func() ;_Ell: J — =hiE <« 3
LE.J 1 Failure e
e @ E3
% Malware
Malwas File) | Debug Variant

Figure 1: LLMalMorph framework

families with available C/C++ source code gener-
ating 618 compiled variants in total.

We extend LLMalMorph’s approach to address
its limitations by introducing multi-platform sup-
port for Android environments, binary-level APK
analysis capabilities, and integrating superior code
generation models. Additionally, we propose auto-
mated rule-based and Al-assisted patching strate-
gies that substantially reduce manual intervention.
Our evaluation both replicates the original findings
on Windows malware and expands the assessment
to include newly collected Windows samples along-
side comprehensive Android and APK threat anal-
ysis.

3.2 Our Proposal: MPMalGen Framework

We propose MPMALGEN (Multi-platform Mal-
ware Generation), which implements a multi-stage
pipeline consisting of integrating source discovery
code, structural parsing, LL.M-based transforma-
tion, post-generation sanitization, and automated
recompilation. The framework introduces a num-
ber of architectural contributions for an improved
robust and reproducible generation of malware vari-
ants at scale.

Multi-platform Ingestion: Our framework im-
plements a unified ingestion pipeline supporting
diverse source code formats and intermediate code
representations across multiple platforms. This
cross-abstraction approach allows comparison of
transformation strategies at both source and inter-
mediate compilation levels, addressing whether
semantic preservation is more reliably achieved
at the source or intermediate stage. By abstract-
ing platform-specific implementation details, the
framework facilitates scalable processing of mal-
ware families independent of their target environ-
ment or code representation.

Android-Compatible Parsing Tree: We intro-
duce a lightweight, schema-agnostic parser that
extracts function signatures, parameter metadata,

and class structure information without dependence
on heavyweight grammar frameworks. This design
dependss on the insight that full syntactic parsing
is unnecessary for function-level transformation.
Only signature extraction and boundary detection
suffices to isolate transformable units. The parsed
metadata is kept in structured format, to be reused
as cache across experimental trials and reducing
parser invocation overhead. For this module we
mostly kept LLMalMorphs code, just following
their lead to add android specific parsing improve-
ments. MPMalGen can also parse assembly level
smali codes.

Platform-Aware Prompt Engineering with
Android-Specific Transformations: While prior
work established a foundational context-aware
prompting approach, we introduce a critical ex-
tension necessary for multi-platform compatibil-
ity which is platform-specific transformation strat-
egy. The original five general-purpose strategies
(Code Optimization, Quality Refinement, Modular-
ization, Security, and Obfuscation) remain appli-
cable across all platforms and are retained without
modification. However, our primary contribution-
the Android API Adaptation strategy recognizes
that effective malware variant generation requires
domain-specific constraints that reflect the unique
architecture and execution model of Android en-
vironments. This novel strategy encodes Android-
specific knowledge into the prompt template, in-
fluencing the variants. We added several key in-
structions such as: (1) preservation of component
lifecycle semantics (Service/Receiver/Activity dec-
larations and lifecycle callbacks), (2) maintenance
of manifest registrations and method signatures,
(3) safe transformation of permission models and
intent-based communication patterns, (4) obfusca-
tion of background execution mechanisms (Job-
Scheduler, WorkManager, AlarmManager, fore-
ground services) without disrupting functionality
etc. and more to guide the LLM in generating func-

Decompiler Module

LLMalMorph

]

@
———»
Decompiler

Malware
Binary

Improved LLMalMorph

Assembler Module

Variant
source code

Figure 2: Improved MPMalGen Framework

tion level replacements, while maintaining com-
patibility with operational infrastructure. Injecting
these Android-specific constraints into the prompt
composition framework, we enable the LLM to
generate semantically-correct variants that try to
achieve evasion and remain functionally compat-
ible with Android’s strict component model and
permission framework.

Selection of Expert Model: While prior work
employed Codestral-22B for malware variant gen-
eration, we transition to DeepSeek-Coder-v2-16B-
Instruct, an instruction-tuned model specifically
optimized for code generation tasks. This selec-
tion is due to previous works demonstrating that
DeepSeek-Coder-v2, despite its smaller 16B pa-
rameter footprint, demonstrates superior code com-
prehension and transformation/editing capabilities
relative to Codestral-22B. Moreover, the model
exhibits better proficiency in assembly-level code
manipulation, a desired capability for handling in-
termediate bytecode representations. We configure
the model with consistent hyperparameters across
all experiments: temperature 0.8, top-k 40, and
top-p 0.9, with a fixed random seed to ensure repro-
ducibility. These settings are calibrated to balance
generation diversity and allow exploration of trans-
formation variants.

Automated Syntactic Validation and Error Re-
covery: The framework implements a multi-
stage validation and repair pipeline that systemati-
cally detects and corrects LLM-induced syntactic
malformations. The sanitization layer addresses
common failure modes such as: formatting arti-
facts, comment irregularities, literal format mis-
matches, and string boundary errors. Then a val-
idation gate screens for residual anomalies like
unmatched syntax elements, malformed numeric
or string literal and catalogs violation patterns to
inform iterative refinement. A critical recovery
mechanism reconstructs essential structural decla-

rations (class definitions, inheritance hierarchies)
when the LLM omits them, preventing downstream
assembly failures. The pipeline further performs
corpus-level consistency audits, identifying struc-
tural violations across the entire variant population.
By implementing domain-specific post-processing,
the framework makes plausible code and into truly
executable artifacts.

Built-in Recompiler: The framework integrates
recompilation that transforms validated variants
into executable artifacts, closing a gap in prior
work that validates syntax but omits executable gen-
eration. By completing the source-to-executable
pipeline, the framework enables empirical valida-
tion through dynamic analysis. Compilation fail-
ures feed back into the sanitization pipeline, creat-
ing iterative refinement where systematic errors are
progressively eliminated.

4 Results and Discussion

We selected evaluation subjects comprising six
Windows malware projects (C/C++), one Android
source project (Java/Kotlin), and one Android APK
binary to assess framework efficacy. Additionally,
we retested RansomWar from the original founda-
tional work to validate and calibrate against the
authors’ reported findings. The statistical details of
the selected samples are describe in Table 1

To evaluate the variants generated by our frame-
work we use the metric AV detection rate.

Anti-Virus (AV) Detection Rate: The AV de-
tection rate measures the proportion of antivirus
engines that flag a malware variant as malicious.
Formally, for variant M, s, the detection rate is

Ry = % % 100%, where D is the set of detectors
flagging the variant and D is the set of all available
detectors. Multiple evaluation runs are performed
and averaged to account for variability. Lower

detection rates indicate greater evasion success.

Sample Language LOC Files Funcs Type Platform
He4Rootkit C++ 18,481 66 233 Rootkit Win32
Internet-worm C 197 1 2 Infector Win32
SMMRootkit C 19,246 11 111 Rootkit Win32
RansomWar C 1,1266 14 Ransomware Win32
GPUWinJelly C 5,767 19 118 Ransomware Win32
L3MONBOT Smali 94,171 435 55 Android
FakelInst Smali 86,284 74 - SMSWare Android (Binary)

Table 1: Brief description of malware projects selected for experiments.

Rates are measured using VirusTotal and Hybrid
Analysis platforms that aggregate signature-based,
heuristic, and ML-based detection approaches.

4.1 Results

Although we picked 6 windows malware projects
written in C/C++, 1 android project and 2 android
apk binaries for our experimental suit, some of
the projects was completely non-functional after
modification and some files could not be parsed
by the pipeline. Given LLMs current limitations
over large code bases it is somewhat expected.
Finally, we present the results of 3 windows
malware projects 1 android malware project and
1 decompiled apk project. Moreover due to time
constraints we could not evaluate all the strategies
for each of the malware. So, We conducted a
systematic evaluation strategy to identify the most
effective transformation approach for Windows
malware.

Initial experiments on GPUWinJelly evaluated
three candidate strategies: Strategy 1 (Code
Optimization), Strategy 2 (Code Quality & Reli-
ability), and Strategy 6 (Windows API-Specific
Transformation). As shown in Figure 3, Strategy 6
demonstrated superior AV evasion performance,
reducing AV detection from an initial baseline
of 64% to 54% after eight modified functions,
which is a 10% reduction that outperformed both
Strategy 1 (which maintained 64-67% detection)
and Strategy 2 (which remained relatively flat
at 61-67%). Motivated by this we decided to
focus exclusively on Strategy 6 for subsequent
Windows malware evaluation. Consequently,
Internet Worm and RansomWar variants were
evaluated using only Strategy 6. Internet Worm
(Figure 4) exhibited strong evasion characteristics,
with AV detection declining from 55% at baseline

to 46% at two modified functions—an 9%
reduction—demonstrating that API transformation
effectively evades detection in infector-class
malware. RansomWar (Figure 5) achieved the
most substantial improvements, reducing detection
rates from 49% to 39% after only four modified
functions, representing a 10% relative reduction in
detection. This is also consistent with the results
found for RansomWar by LLMalMorph, signaling
our extended framework does not diminish the
variant creation capability of the foundational
baseline.

To prove our framework’s (MPMALGEN) multi-
platform malware variant generation capability, we
tested our novel Android-specific transformation
strategy (strat_Android) tailored to preserve
Android component semantics while enabling
evasion. It is the platform-level counterpart of
Strategy 6 for windows malware. L3monBOT,
an Android Remote Access Trojan implemented
in Java/Kotlin, was evaluated using our custom
Android strategy. As shown in Figure 6, the
framework achieved modest but consistent evasion
performance, maintaining detection rates between
35% and 45% across eight modified methods. The
relatively flat detection rates (ranging from 43%
baseline to 37% at maximum modification) reflect
that the likely file level changes in such a large
codebase is insufficient for evasion, since other
files and API calls still can flag the project. It could
be also due to the default security protocols in
Android’s permission-based detection model and
the constraints imposed by preserving component
lifecycle semantics.

To assess the framework’s effectiveness on com-
piled Android artifacts, we evaluated Fakelnst, an
Android SMSware malware obtained as a decom-

piled APK binary. Our pipeline decompiled it into
assembly level smali files with relevant resources
and libraries. This was our second largest codebase
tested with 86000+ lines of smali code. In this
project we tested our multifile transformation fea-
ture which changes k£ number of functions in each
of the smali files which contain > k functions. Al-
though such aggressive modification demonstrated
huge decline in AV detection rate compared to the
binary apk file binary representation, but it is likely
due to the whole project unrecognizably changing
and not being recompilable even. As shown in Fig-
ure 7, detection rates declined sharply from 51% at
baseline to 1% after modifying 100 methods across
all files and folders. Fixing and debugging is very
difficult at such level for Al level patching, Though
only 7 out of the 74 files have been flagged as hav-
ing syntactical issues after the Al assisted patching.
So, all in all, it demonstrates the possibility of be-
ing functional with additional human debugging
effort.

Limitations: Our experiments were constrained
to ten malware samples across three categories
(six Windows, one Android source, one APK bi-
nary) and results are limited to only five mal-
ware projects, limiting statistical generalization
to broader malware populations. Android seman-
tic preservation remains challenging due to strict
component lifecycle requirements and permission
model constraints, resulting in almost no evasion
gains compared to Windows variants. Moreover,
our framework requires manual debugging inter-
vention for complex multi-file transformations, par-
ticularly for platform-specific API substitutions,
preventing fully automated variant generation at
scale. Results are only evaluated with one metric
which is mostly static analysis dependent. Func-
tionality preservation and hybrid analysis results
have not been explored due to time constraints.
Moreover error free recompilation to binary for
APK files does not work as of now and requires
manual work, even if feasible. So, static analysis
comparison between APK and uncompilable file is
somewhat misleading. Also test results with only
two models does not show the code comprehesnion
and alteration capability of huge LLM landscape.
Task specific fine-tuning is also unexplored and
have not been investigated by any prior works as
well.

Winjelly: AV Detection Rate vs. Modified Functions

AV Detection Rate (%)
8

3 4 5
Number of Functions Modified

Figure 3: GPUWinJelly: AV Detection Rate vs. Modi-
fied Functions across Strategies 1, 2, and 6.

Internet Worm: AV Detection Rate vs. Modified Functions

8

AV Detection Rate (%)

075 100 125
Number of Functions Modified

Figure 4: Internet Worm: AV Detection Rate vs. Modi-
fied Functions using Strategy 6.

RansomWar

AV Detection Rate (%)
s g

|

3 4 5
Number of Functions Modified

Figure 5: RansomWar: AV Detection Rate vs. Modified
Functions using Strategy 6.

L3monBot(Android)

AV Detection Rate (%)
R g

3 4 5
Number of Functions Modified

Figure 6: L3monBOT: AV Detection Rate vs. Modified
Methods using Android Strategy.

References

Md Ajwad Akil, Adrian Shuai Li, Imtiaz Karim, Arun
Iyengar, Ashish Kundu, Vinny Parla, and Elisa
Bertino. 2025. Llmalmorph: On the feasibility of
generating variant malware using large-language-
models. arXiv preprint arXiv:2507.09411.

M. Botacin. 2023. Gpthreats-3: Is automatic malware

Fakelnstall: AV Detection Rate vs. Modified Functions

,,,,, L Android (ours)

AV Detection Rate (%)

W &
Number of Functions Modified

Figure 7: Fakelnst: AV Detection Rate vs. Modified

Methods using Android Strategy.

generation a threat? In Proceedings of the IEEE
Security and Privacy Workshops (SPW), pages 238—
254.

. Choi, D. Shin, H. Kim, J. Seotis, and J. B. Hong.
2019. Amvg: Adaptive malware variant generation
framework using machine learning. In Proceedings
of the 24th Pacific Rim International Symposium on
Dependable Computing (PRDC), pages 246-262.

. Ling, Z. Wu, B. Wang, W. Deng, J. Wu, S. Ji, T. Luo,
and Y. Wu. 2024. A wolf in sheep’s clothing: Practi-
cal black-box adversarial attacks for evading learning-
based windows malware detection in the wild. In Pro-
ceedings of the 33rd USENIX Security Symposium,
pages 7393-7410.

K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shin-

tre. 2021. Malware makeover: Breaking ml-based
static analysis by modifying executable bytes. In
Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, pages 744—
758.

. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao.
2017. Impeding behavior-based malware analysis via
replacement attacks to malware specifications. Jour-

nal of Computer Virology and Hacking Techniques,
13:193-207.

Y. Qiao, W. Zhang, Z. Tian, L. T. Yang, Y. Liu, and

M. Alazab. 2022. Adversarial malware sample gener-
ation method based on the prototype of deep learning
detector. Computers & Security, 119:102762.

	Introduction
	Related Work
	Design and Implementation
	Foundational Work: LLMalMorph
	Our Proposal: MPMalGen Framework

	Results and Discussion
	Results

