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1 Methodology

1.1 Data Preprocessing

The preprocessing pipeline prepared for the docu-
ments was kept simple and suitable for LLM pro-
cessing. The raw abstracts underwent minimal
whitespace normalization. Appropriate structured
prompts were synthesized for each model. We also
computed class imbalance weights incase it would
be needed, executed quality audits (empty texts,
duplicates, imbalance), and exported only the lean
DataFrame comprising title, abstract, and LLM-
ready prompt text.

1.2 Baseline: T5-small

Firstly, We fine-tuned a T5-small (Raffel et al.,
2020) model as a lightweight baseline for pubmed
abstract-to-title generation task on a ∼10k/1k
train/test split. Inputs are abstracts, so maximum
source length was configured to 512 tokens, since
most abstracts are within this limit. Targets are
titles, so target length was capped at 128 tokens
to avoid truncation. We also allowed early </s>
termination for shorter and concise titles. We train
for 3 epochs with AdamW (η = 3× 10−4), linear
decay with 10% warmup, batch size of 16 since
it’s a smaller model and gradient clipping at 1.0 for
stability on longer inputs. Generation uses beam
search (beams=4), early stopping, and no-repeat
bigrams (n = 2) to restrict short-loop repetition
without suppressing biomedical 2-gram phrases.
This set of hyperparameters are kept constant for
other two experimental setups as well (except batch
size), and we will refer to it as the default configu-
ration from here on.

1.3 Up-scaling for Semantic Coverage:
T5-Base

Secondly, to improve capacity and semantic cov-
erage, we experiment on T5-base (Raffel et al.,
2020) with the same tokenization and scheduling,

just reducing batch size (8) to fit memory. We retain
the learning rate and warmup from the default con-
figuration for comparison validity. We also retain
max-source, and max-target parameters as well for
reasons mentioned previously. This setting shown
to work well with beam search in sequence genera-
tion (Wu, 2016). We expect higher ROUGE-L from
better long-range modeling and improved ROUGE-
2 via more accurate content selection, with BLEU
benefiting from increased lexical precision under
the configuration.

1.4 Instruction Finetuned Flan-T5
Thirdly, we experiment with google/Flan-T5, an
instruction-tuned T5 variant (Chung et al., 2024),
by prepending an explicit instruction : “Generate
a title for this pubmed abstract:” to each prompt.
Instruction tuning improves compliance to task for-
mat and can enhance sample efficiency; we there-
fore keep all parameters aligned with default config-
uration for controlled comparison. The prompt ex-
plicitly encodes the output intent, which is known
to increase task conciseness in low-resource sum-
marization settings (Chung et al., 2024). So we
expect a potential gain on the BLEU (precision
outputs) while maintaining ROUGE-2/L through
better keyword selection.

2 Results and Discussion

We evaluated the three T5-based models based on
BLEU (Papineni et al., 2002), ROUGE-2 F1, and
ROUGE-L F1 scores (Lin, 2004). Table 1 summa-
rizes validation and test performance across all ar-
chitectures. BLEU and ROUGE-2/L assess n-gram
fidelity and subsequence coverage, respectively.

2.1 Model Capacity and Performance
T5-base outperforms T5-small across all metrics.
On validation data, T5-base achieves BLEU of
0.142 (+19.3% over T5-small), ROUGE-2 of 0.276
(+11.3%), and ROUGE-L of 0.433 (+8.3%). This



Model Validation Test

BLEU ROUGE-2 ROUGE-L BLEU ROUGE-2 ROUGE-L

T5-small 0.119 0.248 0.400 0.125 0.259 0.414

T5-base 0.142 0.276 0.433 0.139 0.276 0.434

Flan-T5 0.137 0.276 0.433 0.139 0.278 0.439

Table 1: Performance comparison of all models on validation and test sets.

improvement persists on the test set (BLEU: 0.139,
ROUGE-2: 0.276, ROUGE-L: 0.434), Which
demonstrates that increased number of model pa-
rameters (220M vs. 60M parameters) enhances
both n-gram precision (as reflected with BLEU)
and content coverage (as reflected with ROUGE-L).
Moreover, the gains in ROUGE-2 suggest T5-base
better captures key biomedical bigrams, this is im-
portant since there are often bigrams in system or
framework names in the paper titles. The consis-
tent validation-to-test ratio across all metrics for
both models indicates robust generalization and no
overfitting, likely due to appropriate regularization
(dropout, gradient clipping) and T5’s pretraining
on diverse corpora including scientific text.

FLAN-T5-base shows marginal gains over
original T5-base. Validation scores are nearly
identical (BLEU: 0.137 vs. 0.142; ROUGE-2:
0.276 vs. 0.276; ROUGE-L: 0.433 vs. 0.433),
but FLAN-T5 achieves the highest test ROUGE-L
(0.439, +1.2% over T5-base) and ROUGE-2 (0.278,
+0.7%). Test BLEU remains equal at 0.139. The
explicit instruction prefix (“Generate a title for this
pubmed abstract:”) appears to slightly improve sub-
sequence alignment and 2-gram recall on unseen
data. This is expected from the known benefits
of instruction tuning. However, the little improve-
ment suggests that for highly constrained genera-
tion tasks (short titles, domain-specific vocabulary),
the pretrained T5 encoder-decoder already encodes
sufficient context, and instruction formatting pro-
vides no real value beyond large-scale complex
tasks.

Furthermore, Appendix 3 includes the vali-
dation developments of each model as training
progresses. All models exhibit strict valida-
tion improvement across epochs without overfit-
ting signatures. T5-base demonstrates consistent
gains (BLEU: 0.1355→0.1425, +5.2%; ROUGE-L:
0.428→0.433, +1.2%), validating 3-epoch train-
ing sufficiency. FLAN-T5 shows slower early
convergence (epoch-1 BLEU: 0.132 vs T5-base

0.1355) but catches up by epoch 3 (0.137), sug-
gesting instruction-tuning benefits emerge gradu-
ally. T5-small takes a dip after epoch 2 (BLEU
0.119→0.1195), likely indicating parameter satura-
tion.

3 Hyperparameter Tuning

Figures 1 and 2 show the data obtained from tun-
ing two of the the most important hyperparameters,
N = number of finetuning epochs and η = learn-
ing rate. We use Flan-T5 for both experiments
since it performed best on default configuration.

Epoch Tuning. We swept training duration over
{3, 5, 7} epochs to balance convergence and over-
fitting risk on the 10k-sample dataset. Perfor-
mance peaks at 5 epochs across all metrics (BLEU:
0.1382, ROUGE-2: 0.2757, ROUGE-L: 0.4346),
with degradation beyond this point (7-epoch BLEU
drops to 0.1325, −4.1%). The inverted-U trajec-
tory indicates optimal learning by epoch 5, af-
ter which the model begins memorizing training
data specifics rather than generalizing title patterns.
ROUGE-L’s sharper decline (−1.2%) shows sub-
sequence alignment suffers first under overtraining.
Therefore, we claim 5 epochs to be the optimal
sweet spot, though 3-epoch results remain very
close (BLEU 0.131, −5.2% gap), offering a faster
fallback for resource-constrained sitations.

Learning Rate Sensitivity. Testing with η =
{3, 5, 7} × 10−4 reveals best performance at 3 ×
10−4 and 5 × 10−4 (BLEU: 0.139; ROUGE-L:
0.439), but most likely suffers from catastrophic
forgetting at 7 × 10−4 (BLEU: 0.131, −5.8%;
ROUGE-2: 0.269, −3.5%). For all three runs we
kept epochs at 3 to minimize training time. The
most aggressive rate maybe destabilizes encoder-
decoder alignment. We claim 5 × 10−4 as opti-
mal for a lower epoch setting (N = 3), consistent
with T5 literature recommending 3−5× 10−4 for
AdamW on mid-sized corpora (Raffel et al., 2020).



Figure 1: Results for tuning number of epochs.

Figure 2: Results for tuning Learning rate.
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Appendix A

Figures 3, 4 and 5 show the validation losses and
scores for each model as training progresses.



Figure 3: Validation loss for all models on default configuration.

Figure 4: Validation BLEU score for all models on default configuration.

Figure 5: Validation ROUGE-2 and ROUGE-L scores for all models on default configuration.
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