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1 Methodology

1.1 Data Preprocessing

The preprocessing pipeline prepared documents
for transformer-based classification , and also pre-
pares to address severe class imbalance (10:1 ra-
tio) in training data. The raw abstracts and ti-
tles underwent minimal normalization to preserve
domain-specific terminology essential for domain
specific language models. Documents were format-
ted by combining tile and abstracts as: “T'itle :
title\nAbstract : abstract”. We then imple-
mented k-fold cross-validation with two key modi-
fications to address train-test distribution mismatch.
First, validation folds were rebalanced through mi-
nority class oversampling to achieve 15% positive
samples (vs. 9% in training), improving calibration
for the estimated test distribution (=~ 20% posi-
tive). Second, weighted random sampling assigned
class weights inversely proportional to frequency
during training, ensuring balanced batch composi-
tions without data augmentation. To use curriculum
learning in 1.4 and 1.5 we assigned difficulty rat-
ing to each sample based on previous prediction
probability distribution.

1.2 Baseline: Fine-tuned BERT

As a baseline, we fine-tuned BERT-base-uncased
(Devlin et al., 2019) for binary document classi-
fication. The model employed cross-entropy loss
with class weights wg = 0.55 and w; = 5.60 to
address the 10 : 1 class imbalance. Training was
conducted over 5 epochs using the AdamW opti-
mizer with learning rate = 2 x 107, weight
decay A = 0.01, batch size, B = 16, and maxi-
mum sequence length, L = 512 tokens. A linear
warmup schedule spanning 10% of training steps
was done before cosine annealing for learning rate
decay.

1.3 DeBERTa: Addressing Class Imbalance

We selected DeBERTa-v3-base (He et al., 2021)
as one of our improved architectures due to its
disentangled attention mechanism and enhanced
mask decoder, which have demonstrated superior
performance on classification tasks with class im-
balance. After hyperparameter optimization, the
model was trained with focal loss (Lin et al., 2017)
(7 = 3.0) to emphasize hard-to-classify minority
samples, learning rate n = 1 x 10~°, weight decay
A = 0.15, and batch size B = 8 with gradient ac-
cumulation over 2 steps. Training was limited to 3
epochs with aggressive early stopping (patience=1)
to prevent overfitting. This configuration achieved
F7 = 0.86 on public test data, substantially outper-
forming the BERT baseline.

1.4 PubmedBERT: A Domain Specific
Approach

PubMedBERT (Gu et al., 2021) was another one
of the improved model over the baseline, selected
for its domain-specific pretraining on 14 million
PubMed abstracts and full-text articles. This makes
an expert in biomedical terminology and scientific
discourse patterns suitable for our classification
task. We implemented a two-stage training pro-
cedure: first, an initial model was trained without
curriculum learning to generate confidence scores
for all training samples. Sample difficulty was
quantified as d; = 1 — %, where p; represents
the predicted probability for sample ¢. This metric
assigns higher difficulty to samples near the deci-
sion boundary (p; ~ 0.5). Using these scores, cur-
riculum learning proceeded through three epochs
with progressively expanding training subsets: easy
samples (lowest 50% difficulty), medium sam-
ples (lowest 75%), and the complete dataset. We
maintained identical hyperparameters as DeBERTa
(n =1 x 107°, v = 3.0), this approach achieved
the highest public leaderboard score (F1 = 0.88).



1.5 Ensembling Best Outcomes

The final ensemble combined DeBERTa and Pub-
MedBERT predictions through probability averag-
ing with a range of weights starting from equal
wieghts (WpeBERTa = WpubMed = 0.5) to 20-80
(wpeBerTa = 0.2, Wpypmed = 0.8) weights. This
strategy tried to get the best of both worlds: De-
BERTa’s superior attention mechanism for general
text understanding and PubMedBERT’s domain-
specific knowledge. The ensemble is also known to
reduces model-specific biases and prediction vari-
ance. This approach performed on par with our last
approach and achieved the highest score with given
public test data.

2 Results and Discussion

Table 1 summarizes the performance metrics for
each model in terms of F1 score. We use F1 as
the evaluation metric because it is the criterion on
which the Kaggle leaderboard is based.

Our first approach was to use 5-fold cross-
validation on the baseline BERT, which overfit
severely. Investigating the results showed that the
main reasons were class imbalance in the training
data and a discrepancy between the class distribu-
tions of the training and test data. This was evident
from the fact that the training data contained about
9% class 1 samples, but predicting a similar per-
centage yielded a very poor score on the test data.
Hence, we inferred that the test data had a sub-
stantially higher percentage of class 1 samples and
relatively less class imbalance. Another observa-
tion was that the best public score achieved with
the baseline required setting the decision thresh-
old to p(y=1) > 0.05, which indicates very low
predicted probabilities for class 1, even though the
training process used weighted sampling for the
minority classes based on the label distributions
per fold. This suggests poor probability calibration
and limited separation for the positive class.

For the next approach, we considered DeBERTa
for its stronger architecture with disentangled at-
tention, which we hypothesized could generalize
better under imbalance. Moreover, some of the five
folds performed poorly because the already scarce
class 1 training data were not incorporated equally
across folds. To address this and reduce training
time, we reduced the number of folds to 3 so that
each fold contained more positive examples. We
also reduced the number of epochs from five to
three and halved the learning rate. All of these

changes were made to reduce overfitting. For this
approach, continuously tuning the decision thresh-
old yielded the best result at p(y=1) > 0.185,
which was better than the previous setting but still
quite low. The model’s average confidence for both
classes did not show strong separation, indicating
under-confident predictions and limited class polar-
ity.

In our third attempt, we chose PubMedBERT
due to its domain-specific expertise in analyzing
biomedical text from PubMed articles. It also has
fewer parameters than DeBERTa, which can en-
courage less memorization and more reasoning.
Keeping all hyperparameters the same as before,
this model achieved the most significant improve-
ment among all experiments, obtaining a best pri-
vate score of 0.86 and a public score of 0.87.
The optimal prediction threshold in this case was
> 0.775, marking a substantial improvement over
previous approaches in terms of stability, general-
ization, and confidence in class 1 predictions.

Subsequently, we implemented a curriculum
learning approach during training. To achieve
this, we introduced an additional preprocessing
step in which we used PubMedBERT’s prediction
scores to estimate a relative difficulty rating for
the training samples. Samples whose average
(across all validation folds) prediction probabilities
were closest to 0.5 were considered the hardest,
as the model was most uncertain about them.
Although this approach achieved a higher public
leaderboard score (0.888), it resulted in a lower
private score, which unfortunately ended up being
our final submission. But, we can argue that, it
did increase the robustness of the model since
optimal prediction threshold in this case was better
(> 0.8375) signifying more confident predictions.
Moreover without curriculum learning it yielded
best private test results(0.865).

Finally, we experimented with two ensemble
configurations combining PubMedBERT and De-
BERTa predictions in 50 — 50 and 80 — 20 ratios.
The goal was to use the complementary strengths
of both models—PubMedBERT’s domain-specific
reasoning and DeBERTa’s contextual understand-
ing. While the 50 — 50 ensemble improved sta-
bility, the 80 — 20 mix resulted in a higher pri-
vate score (0.855). This is mostly due to Pub-
MEJBERTS confidence dominating the ensemble
and pulling through whereas DeBERTa’s prediction
scores were less confident.



Model k Best Fold (F1score) Avg. Fold (F1score) Test Score(Public) Test Score(Private)
Baseline BERT 5 0.868 0.816 0.733 0.660
DeBERTa 3 0.806 0.785 0.838 0.868
PubmedBERT 3 0.699 0.683 0.876 0.865
PubmedBERT(Curriculum) 3  0.700 0.683 0.888 0.847
Ensemble(50 — 50) 3 0.685 0.591 0.852 0.836
Ensemble(20 — 80) 3 0.693 0.652 0.868 0.855

References

Table 1: Performance comparison of all the models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171-4186.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1-23.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollér. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980-2988.



	Methodology
	Data Preprocessing
	Baseline: Fine-tuned BERT 
	DeBERTa: Addressing Class Imbalance 
	PubmedBERT: A Domain Specific Approach
	Ensembling Best Outcomes

	Results and Discussion

