
Divide2Conquer (D2C): A Decentralized Approach
Towards Overfitting Remediation in Deep Learning

Md. Saiful Bari Siddiqui
Department of Computer Science and

Engineering
BRAC University

Dhaka, Bangladesh
saiful.bari@bracu.ac.bd

Md Mohaiminul Islam
Department of Computer Science and

Engineering
United International University

Dhaka, Bangladesh
mohaiminul@cse.uiu.ac.bd

Md. Golam Rabiul Alam
Department of Computer Science and

Engineering
BRAC University

Dhaka, Bangladesh
rabiul.alam@bracu.ac.bd

Abstract—Overfitting remains a persistent challenge in deep
learning. It is primarily attributed to data outliers, noise, and
limited training set sizes. This paper presents Divide2Conquer
(D2C), a novel technique designed to address this issue. D2C
proposes partitioning the training data into multiple subsets and
training separate identical models on them. To avoid overfitting
on any specific subset, the trained parameters from these models
are aggregated and scaled periodically throughout the training
phase, enabling the model to learn from the entire dataset
while mitigating the impact of individual outliers or noise.
Empirical evaluations on multiple benchmark datasets across
various deep learning tasks demonstrate that D2C effectively
improves generalization performance, particularly for larger
datasets. This study verifies D2C’s ability to achieve significant
performance gains both as a standalone technique and when
used in conjunction with other overfitting reduction methods
through a series of experiments, including analysis of decision
boundaries, loss curves, and other performance metrics. It also
provides valuable insights into the implementation and hyper-
parameter tuning of D2C. Our codes are publicly available at:
https://github.com/Saiful185/Divide2Conquer.

Index Terms—Deep Learning, Hyperparameter, Image Classi-
fication, Overfitting, Text Classification.

I. INTRODUCTION

Deep Learning models often do well on the data they
train on, but the performance drops massively on unseen
data from different distributions. This phenomenon is known
as Overfitting. Many methods have been proposed to reduce
overfitting over the years [8]. Early Stopping [19] is one of the
most intuitive methods used for reducing overfitting. However,
it stops models from utilizing the learning process properly
[20]. Network reduction views outlier data points as noise
and reduces the model complexity. However, this method also
brings a constraint in learning complex features [21]. Data
Augmentation is another way of addressing overfitting and
is often the go-to method followed in many deep learning
applications [22]. However, selecting the appropriate data
augmentation technique for a particular dataset is often tricky.
Acquiring more training data often requires monumental ef-
forts too. Regularization is one of the most influential and
popular techniques to reduce overfitting. They are associated

This work was supported by the Institute for Advanced Research (IAR),
United International University under Grant UIU-IAR-02-2022-SE-06.

with penalties so that the model is not entirely dependent
on the training data points. Dropout is probably the most
relevant overfitting-reducing method for deep learning models
[4]. It is another regularizing technique that drops a portion
of the connections between neural network layers. However,
even dropout can’t always counter overfitting and sometimes
degrades the performance of a model [13]. Eventually, the
model still trains on the entire training data at once, and the
robust neural network structures find their ways to fit on the
training set a bit too much. This is where our motivation comes
from. Perhaps the neural network should not be allowed to
train on the entire dataset. Maybe we should combine multiple
models that train on different portions of the data.

Our study is loosely inspired by Federated Optimization [2].
The federated optimization technique suggests training in each
edge device using a similar network on the data available in
that local device. However, after a specific time, each device
sends the parameter weights of its model(not the data) to a
central server, where the weights are aggregated and averaged.
Finally, the averaged weights are sent to all the local devices
again and the loop continues. Federated optimization, however,
is aimed at safe utilization of data situated in edge devices,
not better generalization.

In our study, we implemented a novel method, Di-
vide2Conquer (D2C). We divided our training data into mul-
tiple subsets and trained a model each(all having the same
architecture) with the training subsets. After an epoch, or,
a few epochs, we performed weighted averaging of all the
parameter weights from all the subsets and shared the weights
back with the subset models. Then the whole process is
repeated for several global epochs.

The K-Fold-Cross-Validation method for evaluation pro-
posed by Korjus K. et al. [9] has some similarities to our
proposed method in the sense that it also creates subsets by
partitioning the dataset and makes use of the whole training
data. However, this method is different from ours since the
erroneous samples still make it to the training phase (K-1/K)-th
of the time in K-Fold CV. D2C method partitions data and the
whole training process is partitioned too, which means none
of the subsets is fed with a particular outlier while training
bar one, minimizing the impact of these erroneous samples.

https://github.com/Saiful185/Divide2Conquer

D2C method also has similarities with Bagging [15] in
the form of using subsets of data. However, in bagging
(Bootstrap Aggregating), the data is not completely separated
for different models as we proposed. Instead, the technique
involves creating multiple subsets of the original dataset by
randomly sampling with replacement. This means that some
data points may be repeated in a subset, while others may be
excluded altogether. Also, in bagging, the aggregation is done
by combining the output probabilities, not the model weights.

Our experiments encompass multiple datasets across dif-
ferent domains, and each of the cases suggests dividing the
training set into multiple subsets, training them separately,
and averaging the parameters after every few epochs can
significantly reduce overfitting. To evaluate the performance,
the primary comparison was between the performances of the
base Neural Network architecture used for the subset models
using the entire training data and the performance of our
models using Divide2Conquer method. We summarized our
contributions through this study below:

• We introduced a new method, D2C, that helps in reducing
overfitting significantly, while being conceptually simple
and easy to implement.

• D2C method can be applied on top of many other
data augmentation and regularization techniques, and our
experiments show that this results in a clear improvement
in the model’s generalization ability.

• We also extensively tuned the hyperparameters introduced
by this method and reported the findings, providing
important directions for future applications.

The paper is organized as follows. In section II, we discuss
relevant literature. We establish the theoretical justification
behind our hypothesis in section III. In sections IV and V,
we discuss our methodology and lay out the experimental
specifications. In section VI, we evaluate our approach through
empirical experiments on multiple datasets and analyze the
results. Section VII contains concluding remarks.

II. RELATED WORKS

Several authors have addressed the issue of overfitting
while performing various classification tasks. M. Cogswell
et al. proposed a new regularizer called DeCov which helps
reduce overfitting in deep neural networks by Decorrelating
Representations [5]. Dropout [4] was proposed by Srivastava
et al. back in 2014, and since then, this technique has been
extensively used in very complex neural network architectures
successfully. It was indeed an outstanding contribution specif-
ically for deep learning-based models. Batch Normalization
[6] proposed by Ioffe and Sergei primarily focuses on better
convergence and somewhat contributes to reducing overfitting.
J. Kolluri and V.K Kotte came up with L¼ regularization
to solve the problems faced by L1 and L2 regularization
techniques [10]. Ensembles are also often used to improve
generalization. The ensemble-based ELVD model [3] managed
to outperform the traditional VGGNet and DropoutNet models
in terms of reducing overfitting. Zehong Zeng et al. came
up with an ensemble framework that incorporates several

techniques to prevent overfitting [7]. Min-Gu Kim et al. also
proposed parallel ensemble networks to reduce overfitting
in ECG data and prevent the degradation of generalization
performance as the training progresses [1]. We implemented
a method based on federated optimization preliminarily for
facial expression recognition using FedNet [12]. This model
achieves excellent results in terms of generalization on both
CK+ and FER-2013 datasets. Overfitting remains a prevalent
issue in supervised machine learning despite methods like
Early Stopping, Network Reduction, Training Set Expansion,
Regularization, and Dropout being effective [8]. D2C method
tries to build an approach that focuses on achieving better
generalization by using this method which can be implemented
on top of other overfitting-reducing techniques.

III. THEORETICAL FRAMEWORK

A. The Hypothesis
Overfitting happens when a model fits too well on the

data that it trains on. It effectively captures even the random
characteristics from the training data, randomness that would
be insignificant in real-world applications. The presence of
outliers and noisy data is a fundamental reason behind over-
fitting. In this study, we investigate a probable method to
minimize the effect of these outliers and noisy data.

One way of minimizing the contribution of outliers/noise
can be dividing the training data into multiple shards and
training each shard separately. That way, each data point
will only occur once in one of the several data shards. The
representative samples would be close to each other in the
feature space and would be present in each of the data shards
more or less uniformly. However, the individual outliers/noise
would only be able to impact one of the training processes.
After training, some kind of averaging can be done to combine
the results of all the models. Averaging would mean that the
effect of the outliers/ noise would be reduced by a factor of
N, where N is the number of data shards. Let us discuss the
key factors behind our hypothesis of this method being able
to address overfitting:

1) Weighted averaging of parameters helps in combining the
knowledge learned by different subset models. However,
extreme parameter updates driven by noise or outliers in
individual models are moderated when averaging across
multiple models. If a model encounters a noisy sample
that deviates significantly from the overall data distribu-
tion, it might adjust its parameters excessively to fit that
sample, leading to overfitting. However, if the training
data is divided into subsets and trained separately, even if
one model’s parameters are influenced by noisy or outlier
samples, their impact is diluted when combined with the
parameter weights of other models during averaging. As
a result, the averaged parameters should reflect a more
balanced representation of the underlying data distribu-
tion, mitigating the influence of individual noisy or outlier
samples.

2) Averaging the parameter weights post-training is partic-
ularly helpful in combating overfitting since it has a reg-

ularizing effect. Averaging parameter weights regularizes
the model at the parameter level. It moderates extreme
updates driven by noise or outliers in individual mod-
els, leading to more stable and generalizable parameter
values. This helps prevent overfitting by discouraging
models from fitting to the noise or idiosyncrasies present
in their training subsets. By averaging parameter weights,
the central model should converge to a shared solu-
tion that reflects the collective knowledge learned from
different perspectives. This consensus learning approach
encourages models to learn generalizable patterns and
reduces reliance on individual model predictions that may
be prone to overfitting.

3) Averaging parameter weights should smooth out the deci-
sion boundary learned by individual models. Extreme or
noisy parameter updates that result in sharp or jagged
decision boundaries in individual models are likely to
be moderated and smoothed when combined through
averaging, consequently helping in generalizing well to
unseen data and reducing the risk of overfitting.

In summary, Divide2Conquer method helps mitigate the
effects of noise and outliers. They can still affect the cen-
tral model. However, the effect should be much less. Also,
dividing the training set into too many subsets can result in
very small data sizes in subset models, which may hamper
the performance of these models to some extent even after
averaging.

B. Mathematical Intuition

To formulate an underlying intuition behind our hypothe-
sis, we must first define overfitting formally. We follow the
groundwork laid out by [15]. Let us consider a Dataset D
with training set T and test set R so that,

T ∪R = ∅

Let, T consist of datapoints {(xi, yi)}ni=1 and test set R consist
the datapoints {(xi, yi)}mi=1. Also, let f be the function that
maps each datapoint in the training set to its corresponding
output label(true observations), i.e., f(xi) = fi, where fi is the
true corresponding output label for xi. This model is unknown
and we wish to train a model that replicates f as closely as
possible. The problem is both the ground truth model and the
true labels are unknown to us. Realistically, there is always
some noise in the training dataset. We assume that the training
output may be corrupted with some additive noise ϵi. So, we
can say, yi = fi + ϵi, where ϵi is some Gaussian noise, ϵ ∼
N (0, σ2). Since, the mean of the distribution is zero we can
say that E(ϵi) = 0, hence also V ar(ϵi) = 0 and as the variance
of a random variable x can be denoted as V ar(X) = E(x2)−
E(x) we have,

E(ϵ2i) = V ar(ϵi) + E(ϵi) ⇒ E(ϵ2i) = 0 + σ2 = σ2

Our assumption is that the input of the training dataset
{xi}ni=1 and their noise-added outputs {yi}ni=1 are available
to us, and our goal is to estimate the true model f by a
model f̂ in order to predict the labels {yi}ni=1 for the input

data {xi}ni=1. Let the estimated observations be {ŷi}ni=1. It
is preferable that {ŷi}ni=1 are close as possible to {yi}ni=1.
Mathematically, we can consider this as a minimization prob-
lem looking to minimize some error function such as MSE
(Mean squared error). The MSE of estimated outputs from
the trained model with respect to the dataset outputs are:
MSE = 1

n

∑n
i=1(ŷi − yi)

2 = E((ŷi − yi)
2). Let us consider

a single arbitrary datapoint (x0, y0) and the corresponding
prediction of the trained model f̂ for the input x0 is ŷ0.
Ghojogh (2023) [15] showed that if the sample instance
(x0, y0) /∈ T i.e., it belongs to the test set R, MSE of the
predicted label can be expressed as -

MSE = E((ŷ0 − y0)
2) = E((ŷ0 − f0)

2) + σ2 (1)

Here we can observe from the first term of the R.H.S. of the
equation that the MSE of the estimation of output labels with
respect to the dataset labels can actually be represented by the
MSE of the estimation with respect to the true uncorrupted
labels {fi}ni=1 plus some effect of the noise that exists in
the dataset. Taking Monte-Carlo approximation [16] of the
expectation terms in Eq.(1) we have:

1

m

m∑
i=1

(ŷi − yi)
2 =

1

m

m∑
i=1

(ŷi − fi)
2 + σ2

=

m∑
i=1

(ŷi − fi)
2 +mσ2

(2)

Here the term
∑m

i=1 (ŷi − yi)
2 is the total error between

the model predictions and the dataset labels which we can
call the empirical observed error, e. On the other hand,∑m

i=1 (ŷi − fi)
2 represents the total error between predic-

tion labels and the true unknown labels, namely E. Hence,
e = E + mσ2. Thus, the observed error truly reflects the
true error because the term mσ2 remains constant. Which is
the theoretical justification for evaluating model performance
using unseen test data. But, if (x0, y0) ∈ T , deriving the M.S.E
yields:

MSE = E((ŷ0−y0)
2) = E((ŷ0−f0)

2)+σ2−2σ2 E(
∂ŷ0
∂y0

)

(3)

Using the same approximation as Eq.(3) on the training set T
we get:

1

n

n∑
i=1

(ŷi − yi)
2 =

1

n

n∑
i=1

(ŷi − fi)
2 + σ2 + 2σ2 1

n

n∑
i=1

∂ŷi
∂yi

=⇒
n∑

i=1

(ŷi − yi)
2 =

n∑
i=1

(ŷi − fi)
2+nσ2+2σ2

n∑
i=1

∂ŷi
∂yi

(4)

From Eq.(4) we now understand while the model is training
the observed empirical error calculated on the training dataset
i.e, training error is not a clear representation of the true error
because now e = E+nσ2−2σ2

∑n
i=1

∂ŷ0

∂y0
. Hence, even if we

are able to obtain a small value of e, the term 2σ2
∑n

i=1
∂ŷ0

∂y0

can grow large as the training progresses and hide the true
value of a substantial and large true error E (Figure 1). We
can conclude from this analysis that the final term in Eq.(3)
is a measure of the overfitting of the model. Which is also
known as the complexity of a model. Upon a closer look at this
final term, we can derive some more interesting insight. ∂ŷ0

∂y0
is

essentially the rate of change of the predicted label ŷi for the
input xi with respect to the change in dataset label yi. It makes
sense that prediction labels would vary if the corresponding
output in the dataset varies as the sample is considered from
within the training set. It also reflects how dependent the model
is on the training set, as the term grows when the predicted
output varies too much with respect to changes in the training
samples. This fits the classical definition of overfitting i.e.,
fitting too tightly to the training data and thus performing way
worse when evaluated with actual test data. Evaluation on test
data accurately represents the true error from Eq.(2).

Empirical error

True error

Complexity

Training progression

E
rr

or
es

tim
at

io
n

Fig. 1: When the corresponding complexity term grows and
dominates the expression in Eq.(4) for empirical error, the
model starts to overfit as empirical error becomes no longer a
true representation of true error.

Statistical analysis shows that a model which overfits has
high variance and low bias. This is because the model becomes
overly complex accommodating for all the outliers in the
training data and fails to generalize on unseen test data.

To see the impact of D2C we consider the training set T
divided into k equal partitions, namely |T1| = |T2| = ... =
|Tk| = |T |/k. Then, we train the model f̂j using the j-th data
chunk, where j ∈ {1, .., k}. As a result, we have k separately
trained models. Finally, we aggregate these subset models into
one central model f̂ . This process is repeated for p global
epochs. For the sake of simplicity, we consider each f̂j is a
regression model with weight matrix WjWjWj = {wj1, ..., wjn} and
bias bj . For an input vector xxx = {x1, ..., xn} the prediction
of the subset model on the t-th epoch can be described as:
f̂j(xxx) =WjWjWj

txxxT + bj . In the case of a single global epoch, we
now wish to aggregate the weight matrices creating the central
weight matrix W̄̄W̄W = {w̄1, ..., w̄n}. Here the weight matrix for

the (t+ 1)-th epoch is:

W̄̄W̄W t+1 =
1

k

k∑
j=1

WjWjWj
t and bt+1 =

1

k

k∑
j=1

btj (5)

Hence, the output of the central model at (t+ 1)-th epoch:

f̂(xxx)t+1 = W̄̄W̄W t+1xxxT + bj

=⇒ f̂(xxx)t+1 =
1

k

k∑
j=1

WjWjWj
txxxT +

1

k

k∑
j=1

btj

=⇒ f̂(xxx)t+1 =
1

k

k∑
j=1

(
WjWjWj

txxxT + btj
)

=⇒ f̂(xxx)t+1 =
1

k

k∑
j=1

f̂(xxx)tj (6)

Let ej,t denote the empirical error of the j-th model while
estimating some arbitrary instance on the t-th global epoch.
We assume this error to be a random variable with normal
distribution having mean zero, i.e., ejt ∼ N (0, s). Hence,
E(ejt) = 0 and V ar(ejt) = s. Let us denote the estimation
of the product of two trained models using two different data
chunks by c, i.e, E(ejt × elt) = c . So, we have:

E(e2jt) = V ar(ejt) + E(ejt) ⇒ E(e2jt) = 0 + s = s

Again for j, l ∈ {1, ..., k} where j ̸= l we have:

Cov(ejt, elt) = E(ejt × elt)− E(ejt)E(elt)
=⇒ Cov(ejt, elt) = c− 0× 0 = c

=⇒ Cov(f̂(xxx)tj , f̂(xxx)
t
l) = c− 0× 0 = c (7)

From Eq.(6) and Eq.(7) we can deduce:

V ar(f̂(xxx)t+1) =
1

k2
V ar

 k∑
j=1

f̂(xxx)tj


=

1

k2

k∑
j=1

V ar
(
f̂(xxx)tj

)
+

1

k2

k∑
i=1,j=1

k∑
i ̸=l

Cov
(
f̂(xxx)tj , f̂(xxx)

t
l

)
=

1

k2
sk +

1

k2
ck(k − 1) =

s+ c(k − 1)

k

(8)

Eq.(8) provides us with an interesting insight. If the two
subset models are highly correlated i.e, their predictions and
empirical error are very close to each other we can assume s ≈
c. Hence, the variance of the central model at (t+1)-th epoch
can be reduced to: V ar(f̂(xxx)t+1) ≈ (s+s(k−1))/k ≈ s. On
the other hand, if the two models are very dissimilar the same
expression gives us: V ar(f̂(xxx)t+1) ≈ (s+0(k−1))/k ≈ s/k.
As V ar(ejt) = V ar(f̂(xxx)t) = s , each of the subset models
at epoch t has a variance of prediction s, which means if the
subset models at epoch t are completely different, the variation
of estimate decreases by a factor of k on epoch (t + 1).

Consequently, if the subset models are identically trained the
variance remains almost unchanged. This result is similar to
the one proposed by Breiman,1996 [17] and Bühlmann et
al.,2000 [18] through the idea of ’Bagging’, which is a meta
algorithm aggregating multiple model outputs. The analysis
clearly shows that our approach does not at the least worsen
the problem of overfitting in this scenario but rather improves
the central model on each epoch if certain conditions are met.
However, in reality, the subset models are neither completely
different nor exactly the same due to the relative distribution
of the data subsets and their shared model architecture. So,
the degree to which D2C ameliorates overfitting depends on
the model architecture and the correlation among the subset
models. Our results show repeating the process in every central
epoch tends to reduce overfitting in most cases. A limitation
of this analysis is that deep neural networks are mostly
black boxes and their architectures vary tremendously, which
makes establishing a generalized mathematical representation
of them extremely difficult. Hence, our assumption of a
simple regression model is not an exact reflection of the
actual implementation. Despite that, it describes an ideal and
simple scenario where the proposed method should improve
the model. Moreover, it also gave us the insight that this
approach can be used in conjunction with other overfitting
reduction techniques such as Dropouts(Srivastava et al., 2014)
[4]. If dropouts are stacked on top of our method in every
iteration of local training, the neurons are randomly removed
with some probability p(usually p = 0.5). This introduction
of randomness ensures that subset models are different from
each other increasing the chances of improvement when the
models are aggregated.

IV. PROPOSED METHODOLOGY

A. Creating Training Subsets

To train multiple Neural Networks parallelly using different
data, we need to divide the whole training set into multiple
shards. At first, random shuffling is applied to the training set.
After that, it is divided into multiple subsets. This is done
while keeping the class distribution constant. Now each of
these Training Subsets is fed into a subset model. All the
subset models must have precisely the same neural network
architecture, hence the same number of trainable parameters.
Otherwise, averaging of the parameters wouldn’t be possible.

B. Training & Averaging of Trained Parameters

Instead of one training loop, the implementation of our
method requires two loops. The subset training loop is nested
within the global iteration for averaging. The process is started
by creating a central model with the same architecture as
the subset models. Then the weights of central and subset
models are initialized. Inside the inner loop, the subset training
is repeated iteratively for each training subset. Then after a
particular number of local epochs, the parameters from each of
the subset models are scaled and then added to the local weight
list to send to the outer loop where they are averaged. All the
scaled local training weights are added up in the outer loop,

and weighted aggregation and averaging are performed for
each of the parameters. Finally, the central model is modified,
and the parameters are updated to these averaged aggregates.
At this stage, the initialization phase weights of each subset
model are set to the central model’s current parameters. An
entire global training epoch thus concludes. The next step
is to retrain each subset model on the respective training
subset. This whole process is then repeated for several global
epochs. The averaging process here is simply the execution
of weighted parameter averaging. The weights are measured
based on the fraction of data instances belonging to each train-
ing subset. The weighted averaging formula we’re utilizing is
given below.

f(ω) =

K∑
k=1

nk

n
Fk(ω) where, Fk(ω) =

1

n

i∑
i∈Pk

(fi(ω))

The whole process is summarized in Figure 2.

Fig. 2: Divide2Conquer Method at a Glance – Training on each
subset, averaging the trained parameters, setting the Central
model parameters to these values, and sharing the averaged
parameters back to the Subset models to keep the loop running.

C. Hyperparameter Tuning

Tuning the overall model consists of two stages. Firstly,
the subset model and its hyperparameters should be tuned
using a subset/entire training set and the validation set to
find a suitable model to train each training subset. Next, that
base model is utilized to tune the Central model. The new
global hyperparameters that need tuning, in this case, are the
Number of Subsets of the Training Set and the Number of
Epochs before each round of Global Averaging. Testing for
different values for these hyperparameters, the implementation
and the evaluation of our method are done using the best

combination. The appropriate number of training subsets can
be determined first by varying the number of training subsets
and observing the performance metrics like test/validation
accuracy, F1 score, log loss, and also the validation loss curve.
The appropriate number of training epochs in each subset
before the averaging is done each time is likely to be a small
number (1 ∼ 2) since the subset model can quickly overfit the
training subset with a reduced size. So, it makes more sense
to set a small number of epochs initially and tune the number
of training subsets. Once the number of subsets is determined,
the same process can be repeated by varying the number of
training epochs and determining the appropriate value of it.

V. EXPERIMENTAL SETUP

A. Datasets

For image classification, we used the FER-2013 [11]
dataset. FER-2013 is a large dataset containing more than
35000 training images. It consists of grayscale images depict-
ing facial expressions of seven basic emotions: anger, disgust,
fear, happiness, sadness, surprise, and neutral. The dataset’s
diversity and quality vary due to its internet-based collection
method, which may introduce noise and variability in the
images. That is why this dataset is particularly important in
our study, which aims to minimize overfitting caused by the
mentioned issues and improve the generalization performance

For text classification, we used another benchmark dataset,
AG NEWS [14]. It is a widely used benchmark dataset for
text classification tasks. It consists of news articles collected
from the AG’s corpus news collection, covering four major
categories: World, Sports, Business, and Science/Technology.
The dataset contains approximately 127,600 news articles.
This dataset is perfectly balanced in terms of class distribution.
Its large size, balanced distribution of categories, and relevance
to real-world news content make it the perfect candidate for
evaluating the generalization ability of models employing our
proposed method. This dataset is crucial to testing our method
in Big Data scenarios.

B. Experimental Details

• Image Classification: At first, all the images are reshaped
and normalized as part of Data Preprocessing. We applied
one-hot encoding to the labels to use cross-entropy loss
later. We split the training data into training and validation
sets using Scikit-Learn and applied a 90-10 split. We
then divided the training set into multiple subsets. Before
constructing the model, processing each training subset
into tensors, and batching them was our last step. Each
of our subset models was comprised of 4 Convolutional
(32 to 256 kernels progressively) and MaxPooling layer
(2X2) blocks followed by one fully connected hidden
layer (128 neurons). Each block contained two identical
convolutional and one pooling layer. We used the Adam
optimizer, and the learning rate was 0.001.

• Text Classification: In this case, we created a corpus
using all the words that occur in our entire training

dataset. Then we made a word index and word em-
bedding for all the words in the corpus. After that, we
created word sequences using that word embedding for
each data instance. We applied padding to make each
training data point equal in length. In the case of these
1D text sequences, the model we used consisted of 3
bidirectional LSTM layers(128, 64, and 32 units) and
two dense layers(128 and 64 neurons) followed by the
output layer. It took the embeddings as input, and we used
the 100-dimensional version of GloVe from Stanford for
these embeddings. We used the Adam optimizer, and the
learning rate was 0.001.

For our experiments, in both cases, we used a 90-10
Training – Validation split and used the readily available test
sets provided with the datasets. We used dropouts and batch
normalization between the layers in all these models. This is
also important because as we mentioned earlier, our proposed
method can be used on top of other methods that address
overfitting.

VI. RESULTS AND DISCUSSIONS

As discussed in the previous section, we will use loss and
accuracy curves, Test Accuracy/F1 Score, and log loss to
analyze the results and evaluate our method. We also varied
the two new global hyperparameters we talked about in the
previous section: the Number of Subsets of the Training
Set and the Number of Epochs before each round of
Global Averaging. To refer to them concisely, we will use
the variables N and E respectively. This means, in the tables,
figures, and discussions of this section, N will refer to the
Number of Training Subsets and E will refer to the Number
of Epochs before each round of Global Averaging.

A. Visualizing Decision Boundary

At first, we will try to visualize the change in decision
boundaries due to applying D2C method. As we discussed
earlier, in the case of overfitting, the decision boundary often
becomes overly complex and jagged. Applying a method that
addresses overfitting should result in a smoother decision
boundary. To test our method, we used a simple binary classi-
fication dataset. This data set was synthetic and created using
the Scikit-Learn library. Then the 240-sample large dataset
was divided into a training and a test set using a 75-25 split.
The neural network architecture we used for these experiments
comprised of three hidden layers having 100 neurons each.
We didn’t use any other method that treats overfitting in
this case. This helped us understand the difference made by
our proposed method alone. To begin with, we followed the
traditional approach and fed the entire training dataset to
the model. After training the model for a certain number of
epochs, we got the decision boundary shown in Figure 3:

As we can see from Figure 3, the decision boundary in
this plot is highly complex and non-linear. The model creates
intricate regions to distinguish between the two classes. The
boundary closely follows individual points, resulting in a
jagged, convoluted shape. The complexity of the decision

Fig. 3: Decision Boundary using the traditional approach.

boundary suggests that the model is overfitting to the training
data. It is trying too hard to separate every point, including
noise, rather than focusing on general patterns in the data.
Evidence of overfitting is seen in how the model creates small
pockets of blue in the red region and vice versa. This approach
is likely to produce very good results on training data, but it is
likely to struggle with new, unseen data due to its sensitivity
to specific details in the training set. The highly irregular
boundary reflects poor generalization ability. The accuracies
we got using the training set and the test set also depict
the same picture. The training accuracy using this traditional
approach was 99.44%, but the test accuracy was just 68.33%,
showing significant overfitting.

Applying Divide2Conquer method meant we had to divide
our training set into multiple subsets. Then each of the subsets
was trained parallelly and after a few epochs, the trained
weights from each subset were averaged to get the final
weights. In this case, we divided the training set into 3 subsets
and got the decision boundary shown in Figure 4.

Fig. 4: Decision Boundary using D2C method for 3 subsets.

As we can see in Figure 4, the decision boundary is much
simpler, dividing the feature space almost diagonally. This
suggests a less flexible, more generalized model, due to aver-

aging the weights from multiple subsets. These boundaries are
smooth and do not follow the exact positions of individual data
points as closely. The models are more generalized, focusing
on the overall trend in the data rather than trying to accommo-
date every individual point, exhibiting much less overfitting
compared to what we saw in the traditional approach using
the same model architecture. By averaging the weights from
different subsets, the model smooths out the noise in the data
and prevents overfitting to specific training samples. This clear
improvement in generalization ability stems from the fact that
each of the noisy samples in the dataset occurs only once
in one of the subsets. So, irregularity around the individual
noisy sample does not affect all the subsets, but rather only
one of them. Hence, after averaging the weights, the impact of
the individual outlier is minimized. We can see further proof
of better generalization by comparing the training and test
accuracies for each model. These accuracies are summarized in
Table I provided below. However, perhaps the most important
characteristic of D2C method is that it can be used on top of
other counter-overfitting measures. For example, we can use
dropouts in the local architecture and also divide the training
set into multiple subsets. In the following subsections, we
will investigate whether using this method on top of other
techniques offers any added advantage or not.

TABLE I: Performance of the traditional approach vs different
values of N Using D2C method.

Model Settings Training Accuracy Test Accuracy

No Subsets 0.9944 0.6833
N=2 (2 Subsets) 0.7611 0.75
N=3 (3 Subsets) 0.7944 0.8333
N=4 (4 Subsets) 0.7889 0.8333

B. Analyzing Loss and Accuracy Curves

The loss curve is a definitive indicator of overfitting. If the
validation loss curve follows the training loss curve closely,
it usually means good generalization. Even if the loss curve
shows an upward trend, if Divide2Conquer method manages to
slow down the rate at which the loss increases, it necessarily
indicates a reduction in overfitting. Let us examine the loss
curves generated in the two domains we have experimented
on.

Image Classification: The FER2013 dataset represents a
particularly overfitting-prone task in Facial Expression Recog-
nition, hence crucial in our study. Let us first take a look at
the loss curves generated using the FER2013 dataset. First,
the number of epochs before each round of global averaging,
E was kept constant at 1 and the number of subsets, N was
varied between 1 and 7. Later we also analyzed the impact
of changing the number of epochs, E, by varying it keeping
N constant, and observing the loss and accuracy curves. To
compare the curves effectively, in each case, we trained our
model in such a way that the total number of global epochs
equals the number of global epochs for E=1 divided by E.
That way, the total number of local epochs during training

was kept constant, as each of the global epochs represented E
number of local epochs in the subsets.

The loss and accuracy curves from Figure 5 and Figure 6
show proof of what we inferred before. The validation loss
starts increasing quite abruptly after a few epochs in the case
of the implementation based on the traditional approach. The
overfitting in this case is very much apparent. The rate of
increase in validation loss as the training progresses goes
down very rapidly as we apply D2C method and increase
the number of subsets. The validation accuracy, however,
doesn’t come down as the loss increases (hence early stopping
is not an option). Rather counterintuitively, the validation
accuracy maintains an increasing trend almost throughout the
100 epochs. We also notice a slight improvement in the peak
stable accuracy with our proposed method over the traditional
approach. So, dividing the training set into multiple subsets
improves both validation accuracy and loss in this case.

Fig. 5: Validation loss curves for the traditional & D2C method
for different numbers of subsets, N, on FER2013.

Fig. 6: Validation accuracy curves for the traditional & D2C
method for different numbers of subsets, N, on FER2013.

We can also see from Figure 7 that when we vary the
number of epochs before each round of global averaging, E,
there is no clear indication of any kind of change in the trend
or the rate of change in the validation losses as the training

Fig. 7: Validation loss curves for different numbers of epochs
before each round of global averaging, E, while keeping the
number of subsets, N = 2 & 3.

progresses. Here, for both N=2 (shades of blue) and N=3
(shades of green), the validation curves are quite similar for
different values of E throughout the training phase. Hence,
we can conclude that varying the number of epochs before
each round of global averaging, E does not have any obvious
implications on log loss as we saw in the case of varying the
number of subsets, N. However, an increased number of local
epochs before each round of global averaging means more
scope for learning from each of the subsets before averaging,
sometimes even overfitting on a particular subset.

Text Classification: We used AG News, a benchmark
dataset to test our method primarily in the NLP domain. Its
large size and balanced distribution mean this is a perfect
candidate for applying our proposed method of dividing the
training set into multiple subsets in the Big Data scenario. Let
us observe the validation loss and accuracy curves generated
using the AG News dataset. The loss and accuracy curves

Fig. 8: Validation loss curves for the traditional method & D2C
method for different numbers of subsets, N, on AG News.

generated for AG News depict the clear improvements brought
by the proposed method over the traditional approach. The
loss curve from Figure 8 shows the trend we observed before,

Fig. 9: Validation accuracy curves for the traditional & D2C
method for different numbers of subsets, N, on AG News.

which is that dividing the training data into more & more
subsets delays and minimizes the increase in validation loss
as the training progresses. The validation loss keeps decreasing
with each epoch for longer when using D2C method on the
AG News dataset but starts to increase after very few epochs
again in the case of the traditional approach. The convergence
though, slows down a bit in this case too. More importantly,
with no subsets, the validation loss shoots up sharply after
around 8 epochs, which indicates severe overfitting and im-
pacts the accuracy too as the training progresses as we can
see from Figure 9. However, when we divide the training
set into multiple subsets, the sharp increase in the validation
loss is mitigated drastically. Even with only two subsets, the
improvement is quite significant. When the number of subsets
is increased further to more than two, the loss curve becomes
quite stable. From the accuracy curve from Figure 9, we can
observe that the accuracy crosses the 93% mark and remains
stable when the number of subsets is 2,3 or 5. However,
the validation accuracy for the traditional approach increases
till the 14th epoch and then it starts to decrease again. This
deterioration in accuracy can be linked to the fact that the loss
kept increasing drastically and at some point, it started hurting
the accuracy too, exhibiting overfitting.

The experiments on FER2013 and AG News prove that
dividing the training set into multiple subsets can indeed
address overfitting and enhance the performance of deep
learning models. So, in both cases, Divide2Conquer method
improves both accuracy and loss compared to the traditional
approach, which can be accredited to the overfitting resistant
nature of models using our method. This also shows that
dividing the training set into multiple subsets works in multiple
domains and a diverse set of tasks.

C. Evaluating Accuracy, F1 Score, ROC AUC & Log Loss

Let us finally take a look at the final Accuracy, F1 Score,
and Log Loss values that we got from the predefined test sets
of the datasets we used. the several experiments we performed
on the two datasets. For these values, we used the average from
our multiple repetitive runs (to test for repeatability) for each

case. Each of the experiments was repeated at least 3 to 5
times.
Image Classification: Table II summarizes the findings from
the predefined test set of the FER2013 based on our proposed
method.

TABLE II: Performance Metrics with Traditional Approach
vs. Different Settings Using D2C Method on FER2013.

Model Settings Accuracy F1 Score Log Loss ROC AUC

No Subsets 0.6498 0.6420 2.0112 0.89934
N=2, E=1 0.6511 0.6394 1.9101 0.89875
N=2, E=2 0.6567 0.6444 1.8450 0.9032
N=2, E=3 0.6490 0.6389 1.8718 0.8975
N=3, E=1 0.6491 0.6356 1.6540 0.90104
N=3, E=2 0.6538 0.6465 1.6990 0.89870
N=3, E=3 0.6539 0.6428 1.7315 0.9002
N=5, E=1 0.6500 0.6368 1.5157 0.90153
N=7, E=1 0.6521 0.6432 1.4821 0.90148

We can observe from Table II that the best accuracy and
ROC AUC were achieved using Divide2Conquer method. The
number of subsets, N, was only 2 in this case for the best
model. The number of epochs before each round of global
averaging, E, was 2. D2C approach showed a significant
improvement with an accuracy of 65.67% over the traditional
approach with no subsets, which yielded an accuracy of
64.98%. Also, as we can see from Table II, there is a trend
of decreasing log loss as we increase the number of subsets.
However, no such trend is visible consistently when we
increase the number of epochs, E. The decrease in Log Loss
is important since a lower log loss indicates that the model’s
predicted probabilities align better with the true class labels.
This means the model is more confident and accurate in its
predictions, even if the accuracies are similar. The best model
in terms of F1 score, however, is the model with 3 subsets
and 2 epochs before each round of global averaging. It means
that this model performs better when we consider the classes
individually. This is important since the class distribution of
FER2013 is not balanced. Our proposed method showed a
significant improvement in terms of F1 score too, with an
F1 score of 0.6465, while the traditional approach with no
subsets yielded an F1 score of 0.642. This improvement in the
accuracy and F1 score clearly shows the fact that D2C method
addresses Overfitting better than the traditional approach on
this dataset and hence performs better.
Text Classification: Table III summarizes the findings from
the predefined test set of the AG News based on our proposed
method.

We can clearly observe from Table III that the best ac-
curacy and F1 Score were achieved using our proposed Di-
vide2Conquer method. The number of subsets, N, was 5 in this
case for the best model. The number of epochs before each
round of global averaging, E, was 2. Our proposed method
showed a significant improvement with an accuracy of 92.95%
over the traditional approach with no subsets, which yielded
an accuracy of 92.43%. Using the Divide2Conquer method

TABLE III: Performance Metrics with Traditional Approach
vs. Different Settings Using D2C Method on AG News

Model Settings Accuracy F1 Score Log Loss ROC AUC

No Subsets 0.9243 0.9243 0.2611 0.98764
N=2, E=1 0.9291 0.9291 0.2556 0.98873
N=3, E=1 0.9288 0.9288 0.2520 0.98872
N=3, E=2 0.9275 0.9275 0.2567 0.98852
N=5, E=1 0.9293 0.9292 0.2412 0.98881
N=5, E=2 0.9295 0.9296 0.2451 0.98875
N=7, E=1 0.9271 0.9271 0.2353 0.98916

decreased the error by more than 0.5% in this case. Also,
the trend of decreasing log loss as we increase the number
of subsets is visible here too. The best method in terms of
ROC AUC also happens to be the model with the highest
number of subsets (7). It also seems that the log loss increases
a bit when we increase the number of epochs, E.

The effect of using D2C method is more apparent in this
dataset compared to the previous one. The accuracy improved
significantly compared to the traditional approach in every
variation of our proposed method (for all values of N and E).
AG News is the largest dataset we’ve used for our experiments.
For each class, we had 30000 samples in this dataset. So,
despite dividing the dataset into more and more subsets,
each subset had enough data to train on and at the same
time take advantage of the regularizing effect that dividing
the training set introduces. As a result, the performance of
the models improved significantly, addressing the issue of
overfitting that usually is prevalent in text classification tasks.
The Divide2Conquer method can exploit the large datasets
very well in this way, which traditional models are unable
to do. This finding outlines the promising signs D2C method
shows when it comes to Big Data scenarios.

VII. CONCLUSION

Our study demonstrates that dividing training data into
multiple subsets and averaging the weights iteratively can
treat overfitting and produce significant performance gains
through stability and better generalization. In this paper, we
applied our proposed Divide2Conquer method and tested it
on multiple datasets from different domains. This method
outperformed the traditional approach in all the datasets in
terms of key metrics and showed significantly better resistance
against overfitting. The D2C method also showed a consistent
ability to mitigate the increasing trend of validation loss,
and to produce smoother decision boundaries. These results
prove our hypothesis of this method being able to help
generalize better and resist overfitting to be true. Moreover,
the Divide2Conquer method brings even more improvement
when the dataset is larger, outlining its promise in Big Data
scenarios, especially since D2C method can be applied on top
of other generalization techniques. Thus, the proposed D2C
method opens the door for future research and experiments
using this in several domains.

REFERENCES

[1] Kim, M., Choi, C. & Pan, S. Ensemble networks for user recognition
in various situations based on electrocardiogram. IEEE Access. 8 pp.
36527-36535 (2020)

[2] Konečnỳ, J., McMahan, B. & Ramage, D. Federated optimiza-
tion: Distributed optimization beyond the datacenter. ArXiv Preprint
ArXiv:1511.03575. (2015)

[3] Shanmugavel, A., Ellappan, V., Mahendran, A., Subramanian, M., Lak-
shmanan, R. & Mazzara, M. A novel ensemble based reduced overfitting
model with convolutional neural network for traffic sign recognition
system. Electronics. 12, 926 (2023)

[4] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhut-
dinov, R. Dropout: a simple way to prevent neural networks from
overfitting. The Journal Of Machine Learning Research. 15, 1929-1958
(2014)

[5] Cogswell, M., Ahmed, F., Girshick, R., Zitnick, L. & Batra, D. Reducing
overfitting in deep networks by decorrelating representations. ArXiv
Preprint ArXiv:1511.06068. (2015)

[6] Ioffe, S. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ArXiv Preprint ArXiv:1502.03167.
(2015)

[7] Zeng, Z., Liu, Y., Lu, X., Zhang, Y. & Lu, X. An Ensemble Framework
Based on Fine Multi-Window Feature Engineering and Overfitting
Prevention for Transportation Mode Recognition. Adjunct Proceedings
Of The 2023 ACM International Joint Conference On Pervasive And
Ubiquitous Computing & The 2023 ACM International Symposium On
Wearable Computing. pp. 563-568 (2023)

[8] Ying, X. An overview of overfitting and its solutions. Journal Of
Physics: Conference Series. 1168 pp. 022022 (2019)

[9] Korjus, K., Hebart, M. & Vicente, R. An efficient data partitioning to im-
prove classification performance while keeping parameters interpretable.
PloS One. 11, e0161788 (2016)

[10] Kolluri, J., Kotte, V., Phridviraj, M. & Razia, S. Reducing overfitting
problem in machine learning using novel L1/4 regularization method.
2020 4th International Conference On Trends In Electronics And Infor-
matics (ICOEI)(48184). pp. 934-938 (2020)

[11] Zahara, L., Musa, P., Wibowo, E., Karim, I. & Musa, S. The fa-
cial emotion recognition (FER-2013) dataset for prediction system of
micro-expressions face using the convolutional neural network (CNN)
algorithm based Raspberry Pi. 2020 Fifth International Conference On
Informatics And Computing (ICIC). pp. 1-9 (2020)

[12] Siddiqui, M., Shusmita, S., Sabreen, S. & Alam, M. FedNet: Federated
Implementation of Neural Networks for Facial Expression Recognition.
2022 International Conference On Decision Aid Sciences And Applica-
tions (DASA). pp. 82-87 (2022)

[13] Li, X., Chen, S., Hu, X. & Yang, J. Understanding the disharmony
between dropout and batch normalization by variance shift. Proceed-
ings Of The IEEE/CVF Conference On Computer Vision And Pattern
Recognition. pp. 2682-2690 (2019)

[14] Zhang, X., Zhao, J. & LeCun, Y. Character-level convolutional networks
for text classification. Advances In Neural Information Processing
Systems. 28 (2015)

[15] Ghojogh, B. & Crowley, M. The theory behind overfitting, cross
validation, regularization, bagging, and boosting: tutorial. ArXiv Preprint
ArXiv:1905.12787. (2019)

[16] Ghojogh, B., Nekoei, H., Ghojogh, A., Karray, F. & Crowley, M.
Sampling algorithms, from survey sampling to Monte Carlo methods:
Tutorial and literature review. ArXiv Preprint ArXiv:2011.00901. (2020)

[17] Breiman, L. Bagging predictors. Machine Learning. 24 pp. 123-140
(1996)

[18] Bühlmann, P. & Yu, B. Analyzing bagging. The Annals Of Statistics.
30, 927-961 (2002)

[19] Morgan, N. & Bourlard, H. Generalization and parameter estimation in
feedforward nets: Some experiments. Advances In Neural Information
Processing Systems. 2 (1989)

[20] Prechelt, L. Early stopping-but when?. Neural Networks: Tricks Of The
Trade. pp. 55-69 (2002)

[21] Fürnkranz, J. Pruning algorithms for rule learning. Machine Learning.
27 pp. 139-172 (1997)

[22] Sun, Y., Wang, X. & Tang, X. Deep learning face representation from
predicting 10,000 classes. Proceedings Of The IEEE Conference On
Computer Vision And Pattern Recognition. pp. 1891-1898 (2014)

	Introduction
	Related Works
	Theoretical Framework
	The Hypothesis
	Mathematical Intuition

	Proposed Methodology
	Creating Training Subsets
	Training & Averaging of Trained Parameters
	Hyperparameter Tuning

	Experimental Setup
	Datasets
	Experimental Details

	Results and Discussions
	Visualizing Decision Boundary
	Analyzing Loss and Accuracy Curves
	Evaluating Accuracy, F1 Score, ROC_AUC & Log Loss

	Conclusion
	References

