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Abstract—Overfitting remains a significant challenge in deep
learning, often arising from data outliers, noise, and limited
training data. To address this, we propose Divide2Conquer
(D2C), a novel technique to mitigate overfitting. D2C partitions
the training data into multiple subsets and trains identical models
independently on each subset. To balance model generalization
and subset-specific learning, the model parameters are period-
ically aggregated and averaged during training. This process
enables the learning of robust patterns while minimizing the in-
fluence of outliers and noise. Empirical evaluations on benchmark
datasets across diverse deep-learning tasks demonstrate that D2C
significantly enhances generalization performance, particularly
with larger datasets. Our analysis includes evaluations of de-
cision boundaries, loss curves, and other performance metrics,
highlighting D2C’s effectiveness both as a standalone technique
and in combination with other overfitting reduction methods.
We further provide a rigorous mathematical justification for
D2C’s underlying principles and examine its applicability across
multiple domains. Finally, we explore the trade-offs associated
with D2C and propose strategies to address them, offering a
holistic view of its strengths and limitations. This study estab-
lishes D2C as a versatile and effective approach to combating
overfitting in deep learning. Our codes are publicly available at:
https://github.com/Saiful185/Divide2Conquer.

Index Terms—Classification, Deep Learning, Hyperparameter,
Overfitting, Regularization, Variance.

I. INTRODUCTION

DEEP Learning models often do well on the data they
train on, but the performance drops massively on unseen

data from different distributions. This phenomenon is known
as Overfitting. Many methods have been proposed to reduce
overfitting over the years [10]. Early Stopping [27] is one of
the most intuitive methods for reducing overfitting. However,
it limits the model’s learning potential [28]. Network reduction
reduces variance by simplifying the model, but it restricts
learning of complex features [29]. Data augmentation is a
common approach to mitigate overfitting in deep learning
applications [32]. However, choosing suitable augmentation
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techniques for specific datasets can be challenging, and ob-
taining additional training data often requires substantial effort.
Regularization is a widely used technique to reduce overfitting
by penalizing model dependency on training data. Dropout, the
most relevant regularization method in deep learning, reduces
overfitting by randomly dropping connections between neural
network layers [4]. However, even dropout can sometimes
degrade the performance of a model due to internal covariance
shifts [18]. Eventually, despite employing these techniques, the
model still has access to the entire training data, and the robust
neural network structures find their ways to fit on the training
set a bit too much. This is where our motivation comes from.
It can be a good idea to not let the neural network train on the
entire dataset in the first place. Intuitively, we should combine
multiple models that train on different portions of the data so
that the model can not familiarize itself with all of it at once,
and a consensus can be achieved by focusing on the general
patterns observed in different portions of the data.

We propose a novel method, Divide2Conquer (D2C), which
proposes dividing the training data into multiple subsets and
training a model(all having the same architecture & hyper-
parameters) on each subset. A weighted averaging of all the
parameter weights from the instance model is performed after
a certain number of epochs, and the averaged weights are
shared back to each of the models (we denote them as edge
models in this study). Then, the whole process is repeated for
several global epochs.

D2C is loosely inspired by Federated Optimization [2],
which involves training identical models on local devices
(using the data available on those devices) and periodically
aggregating and averaging their trained parameters on a central
server. This process ensures safe access to data and preserves
privacy, as it only shares the weights, not the data itself.
However, unlike D2C, federated learning is not inherently
designed to enhance model generalization.

The D2C method also has similarities with Bagging [23]
in the form of using subsets of data. However, in bagging
(Bootstrap Aggregating), the data is not completely separated
for different models as we proposed. Instead, the technique
involves creating multiple subsets of the original dataset by
randomly sampling with replacement. This means that some
datapoints may be repeated in a subset while others may be
excluded altogether. Also, in bagging, the aggregation is done
by combining the output probabilities, not the model weights.

Our experiments encompass multiple datasets across differ-
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ent domains, and each case suggests that employing the D2C
method can reduce overfitting significantly. The primary com-
parison to evaluate the method was between the performances
of the base Neural Network architecture used for the Edge
Models using the entire training data and the performance of
our models using the Divide2Conquer method. We summarize
our contributions through this study below:

• We introduce a new method, D2C, that helps in reducing
overfitting significantly while being conceptually simple
and easy to implement.

• We present a mathematical justification for the hypothesis
that D2C mitigates overfitting by rigorously demonstrat-
ing its capacity to reduce model variance. This formal
analysis underscores D2C’s potential to improve model
robustness across diverse datasets.

• D2C can be applied on top of other data augmentation
and regularization techniques, and our experiments across
various datasets and tasks show that this results in a clear
improvement in the model’s generalization ability.

• We extensively tune the hyperparameters introduced by
this method and report the findings, providing important
directions for future applications.

• We also delve into the trade-offs associated with D2C,
including its computational overhead and potential dimin-
ishing returns for smaller datasets. We explore strategies
to mitigate these challenges and provide a comprehensive
understanding of D2C’s strengths and weaknesses.

The paper is organized as follows. In section II, we discuss
relevant literature. We establish the theoretical justification
behind our hypothesis in section III. In sections IV and V,
we discuss our methodology and lay out the experimental
specifications. In section VI, we evaluate our approach through
empirical experiments on multiple datasets and analyze the
results. We discuss the limitations of D2C in section VII.
Section VIII contains concluding remarks.

II. RELATED WORKS

Several authors have addressed the issue of overfitting while
performing various tasks. M. Cogswell et al. proposed a
regularizer called DeCov, which helps reduce overfitting in
deep neural networks by Decorrelating Representations [5].

Dropout [4] was proposed by Srivastava et al. back in
2014, and since then, this technique has been extensively used
in very complex neural network architectures successfully. It
was indeed an outstanding contribution, specifically for deep
learning-based models. Batch Normalization [8] proposed by
Ioffe and Sergei primarily focuses on better convergence
and somewhat contributes to reducing overfitting. J. Kolluri
and V.K Kotte came up with L¼ regularization to solve the
problems faced by L1 and L2 regularization techniques [15].

Ensembles are also often used to improve generalization.
The ensemble-based ELVD model [3] managed to outperform
the traditional VGGNet and DropoutNet models in terms of
reducing overfitting. Zehong Zeng et al. came up with an
ensemble framework that incorporates several techniques to
prevent overfitting [9]. Min-Gu Kim et al. also proposed
parallel ensemble networks to reduce overfitting in ECG data

and prevent the degradation of generalization performance as
the training progresses [1].

We implemented a method based on federated optimization
preliminarily for facial expression recognition using FedNet
[17]. This model achieves excellent results in terms of gener-
alization on both CK+ and FER-2013 datasets. The K-Fold-
Cross-Validation method for evaluation proposed by Korjus K.
et al. [13] has some similarities to our proposed method in the
sense that it also creates subsets by partitioning the dataset and
makes use of the whole training data. However, this method is
different from ours since the erroneous samples still make it to
the training phase (K-1/K)-th of the time in K-Fold CV. The
proposed D2C method partitions data and the whole training
process is partitioned too, which means none of the subsets is
fed with a particular outlier while training bar one, minimizing
the impact of these erroneous samples.

Overfitting remains a prevalent issue in supervised machine
learning despite methods like Early Stopping, Network Re-
duction, Training Set Expansion, Regularization, and Dropout
being effective [10]. Through D2C, we build an approach that
focuses on achieving even better generalization and can be
implemented on top of other overfitting-reducing techniques.

III. THEORETICAL FRAMEWORK

A. The Hypothesis

Overfitting happens when a model fits too well on the data
that it trains on. It effectively captures and memorizes even the
random characteristics from the training data, randomness that
would be insignificant in real-world applications. The presence
of outliers and noisy data is a fundamental reason behind
overfitting. In this study, we formulate a method to minimize
the effect of these outliers and noisy data.

The contribution of outliers/noise can be minimized by
dividing the training data into multiple shards and training
each shard separately. That way, each data point will only
occur once in one of the several data shards. The representative
samples would be close to each other in the feature space and
would be present in each of the data shards more or less uni-
formly. However, the individual outliers/noise would only be
able to impact one of the training processes. Aggregation and
averaging can be done periodically to combine all the models.
In the best-case scenario, due to averaging, the effect of the
individual outliers/noise would be reduced by a factor of N,
where N is the number of data shards. The key factors behind
our hypothesis and considerations regarding this method being
able to address overfitting are discussed as follows:

1. Weighted averaging of parameters helps in combining the
knowledge learned from different subsets. However, extreme
parameter updates driven by noise or outliers in individual
models are moderated when averaging across multiple models.
If a model encounters a noisy sample that deviates significantly
from the overall data distribution, it might adjust its parameters
excessively to fit that sample, leading to overfitting. However,
if the training data is divided into subsets and trained sepa-
rately, even if one model’s parameters are influenced by noisy
or outlier samples, their impact is diluted when combined
with the parameter weights of other models during averaging.
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So, the averaged parameters should reflect a more balanced
representation of the underlying data distribution, mitigating
the influence of individual noisy or outlier samples.

2. Averaging the parameter weights is particularly helpful
in combating overfitting since it has a regularizing effect.
Averaging weights regularizes the model at the parameter
level. It moderates extreme weight updates driven by noise or
outliers in individual models, leading to more stable and gen-
eralizable parameter values. This helps prevent overfitting by
discouraging models from fitting to the noise or idiosyncrasies
present in their training subsets. By averaging parameter
weights, the central model converges to a shared solution
that reflects the collective knowledge learned from different
perspectives. This consensus learning approach encourages
models to learn generalizable patterns and reduces reliance
on individual model predictions that are prone to overfitting.

3. Averaging parameters smooths out the decision boundary
learned by individual models. Extreme or noisy parameter
updates that result in sharp or jagged decision boundaries in
individual models are likely to be moderated and smoothed
when combined through averaging, consequently helping in
generalizing well to unseen data and reducing overfitting.

4. The optimal hyperparameters, such as the number of
subsets and epochs before each round of central averaging
vary by dataset and domain. The appropriate subset count
depends on dataset size and class distribution. Suppose the
edge model is complex or the subset count is too high. In
that case, the overly reduced size and number of samples per
class in each subset can result in significant overfitting in edge
models, which in turn can degrade overall performance even
after central averaging. This is similar to what happens in
federated learning when the client data is minimal, as pointed
out by Zhang et al. [34]. When sufficient data exists per class,
more subsets can be beneficial, as noise or outliers are diluted
by a factor of up to N (number of training subsets).

In summary, D2C helps to reduce overfitting by mitigating
the effects of noise and outliers. However, dividing the training
set into too many subsets can lead to insufficient data per
subset, which can hamper the overall performance.

B. Mathematical Intuition

To lay out the underlying intuition behind our hypothe-
sis, we must first define overfitting formally. We follow the
groundwork laid out by Ghojogh et al. [23]. Let us consider
a Dataset D with training set T and test set R so that,

T ∪R = D (1)

T ∩R = ∅ (2)

Let, T consist of datapoints {(xi, yi)}ni=1 and test set R consist
the datapoints {(xi, yi)}mi=1. Also, let f be the function that
maps each datapoint in the training set to its corresponding
output label(true observations), i.e., f(xi) = fi, where fi is the
true corresponding output label for xi. This model is unknown
and we wish to train a model that replicates f as closely as
possible. However, both the ground truth model and the true
labels are unknown to us. Realistically, there is always some

noise in the training dataset. We assume that the training output
is corrupted with some additive noise ϵi. So, we can say,

yi = fi + ϵi (3)

where ϵi is some Gaussian noise, ϵ ∼ N (0, σ2). Since the
mean of the distribution is zero we can say that E(ϵi) = 0,
and V ar(ϵi) = σ2. As the variance of a random variable x
can be denoted as V ar(X) = E(x2)− [E(x)]2 (Appendix A),
we have,

E(ϵ2i ) = V ar(ϵi) + [E(ϵi)]2 ⇒ E(ϵ2i ) = σ2 + 0 = σ2 (4)

Our assumption is that the input of the training dataset
{xi}ni=1 and their noise-added outputs {yi}ni=1 are available to
us, and our goal is to estimate the true model f by a model f̂ in
order to predict the labels {yi}ni=1 for the input data {xi}ni=1.
Let the estimated observations be {ŷi}ni=1. It is preferable that
{ŷi}ni=1 are as close as possible to {yi}ni=1. Mathematically,
we can consider this as a minimization problem looking to
minimize some error function such as MSE (Mean squared
error). The MSE of estimated outputs from the trained model
with respect to the dataset outputs are: MSE = 1

n

∑n
i=1(ŷi −

yi)
2 = E((ŷi − yi)

2). Let us consider a single arbitrary
datapoint (x0, y0) and the corresponding prediction of the
trained model f̂ for the input x0 is ŷ0. Ghojogh et al. [23]
showed that if the sample instance (x0, y0) /∈ T i.e., it belongs
to the test set R, MSE of the predicted label can be expressed
as -

MSE = E((ŷ0 − y0)
2) = E((ŷ0 − f0)

2) + σ2 (5)

Here we can observe from the first term of the R.H.S. of the
equation that the MSE of the estimation of output labels with
respect to the dataset labels can actually be represented by the
MSE of the estimation with respect to the true uncorrupted
labels {fi}ni=1 plus some effect of the noise that exists in
the dataset. Taking Monte-Carlo approximation [24] of the
expectation terms in Eq. (5), we have:

1

m

m∑
i=1

(ŷi − yi)
2 =

1

m

m∑
i=1

(ŷi − fi)
2 + σ2

=⇒
m∑
i=1

(ŷi − yi)
2 =

m∑
i=1

(ŷi − fi)
2 +mσ2 (6)

Here the term
∑m

i=1 (ŷi − yi)
2 is the total error between

the model predictions and the dataset labels which we can
call the empirical observed error, e. On the other hand,∑m

i=1 (ŷi − fi)
2 represents the total error between predic-

tion labels and the true unknown labels, namely E. Hence,
e = E + mσ2. Thus, the observed error truly reflects the
true error because the term mσ2 remains constant, which is
the theoretical justification for evaluating model performance
using unseen test data. But, as Ghojogh et al. [23] showed, if
(x0, y0) ∈ T , deriving the M.S.E yields:

MSE = E((ŷ0−y0)
2) = E((ŷ0−f0)

2)+σ2−2σ2 E(
∂ŷ0
∂y0

) (7)

Using the same approximation as Eq.(6) on the training set T ,
we get:



4

1

n

n∑
i=1

(ŷi − yi)
2 =

1

n

n∑
i=1

(ŷi − fi)
2 + σ2 − 2σ2 1

n

n∑
i=1

∂ŷi
∂yi

=⇒
n∑

i=1

(ŷi − yi)
2 =

n∑
i=1

(ŷi − fi)
2 + nσ2 − 2σ2

n∑
i=1

∂ŷi
∂yi

(8)

From Eq.(8) we now understand while the model is training
the observed empirical error calculated on the training dataset
i.e, training error is not a clear representation of the true error
because now e = E + nσ2 − 2σ2

∑n
i=1

∂ŷ0

∂y0
. Hence, even

if we can obtain a small value of e, the term 2σ2
∑n

i=1
∂ŷ0

∂y0

can grow large as the training progresses and hide the true
value of a substantial and large true error E (Figure 1). As we
can see in the figure, the model starts to overfit as empirical
error becomes no longer a true representation of true error
when the corresponding complexity term grows and dominates
the expression in Eq.(8) for empirical error. We can conclude
from this analysis that the final term in Eq.(7) is a measure
of the overfitting of the model. Which is also known as the
complexity of a model. Upon a closer look at this final term,
we can derive some more interesting insight. ∂ŷ0

∂y0
is essentially

the rate of change of the predicted label ŷi for the input xi

with respect to the change in dataset label yi. It makes sense
that prediction labels would vary if the corresponding output
in the dataset varies as the sample is considered from within
the training set. It also reflects how dependent the model is
on the training set, as the term grows when the predicted
output varies too much with respect to changes in the training
samples. This fits the classical definition of overfitting i.e.,
fitting too tightly to the training data and thus performing way
worse when evaluated with actual test data. Evaluation on test
data accurately represents the true error from Eq.(6). Figure 2
depicts a visualization of this idea.

Fig. 1. When the corresponding complexity term grows and dominates the
expression in Eq.(8) for empirical error, the model starts to overfit as empirical
error becomes no longer a true representation of true error.

Statistical analysis shows that the distinction between an
underfitting model, an overfitting one, and a good fit can be
reflected by their bias and variance with respect to the training

labels. Ideally, a model with low variance and low bias is the
most desirable and usually deemed a good fit. However, during
the training phase, sometimes we see a model has low variance
and high bias which indicates the model predictions are not
good as well as being all over the place, this is the indication
of an underfitting model. It usually happens when the model is
too simple to capture the complexity of the data or has not been
trained for long enough to reach convergence. On the other
hand, we find a model which overfits has high variance and
low bias. This is because the model becomes overly complex
accommodating for all the outliers in the training data and
fails to generalize on unseen test data. Figure 2(a) and 2(c)
show how an underfitting and overfitting model shows low
and high variance respectively. Figure 2 is a visualization of
(a) Underfitting, (b) A good fit, and (c) Overfitting scenarios.
The figures illustrate how the model changes if an arbitrary
training data point (x, y) is shifted to (p, q) by plotting the
trained model before and after the shift. In (a) the underfitted
model the change is very minimal. In the (b) Good fit model
the change is also relatively little, but in the (c) Overfitted
model there is a large shift in the neighboring region of that
data point, which reflects the over-dependence on training data.

To see the impact of D2C we consider the training set T
divided into k equal partitions, namely |T1| = |T2| = ... =
|Tk| = |T |/k. Then, we train the model f̂j using the j-th data
chunk, where j ∈ {1, .., k}. As a result, we have k separately
trained models. Finally, we aggregate these edge models into
one central model f̂ . This process is repeated for p global
epochs. For the sake of simplicity, we consider each f̂j is a
regression model with weight matrix WjWjWj = {wj1, ..., wjn} and
bias bj . For an input vector xxx = {x1, ..., xn} the prediction
of the edge model on the t-th epoch can be described as:
f̂j(xxx) =WjWjWj

txxxT + bj . In the case of a single global epoch, we
now wish to aggregate the weight matrices creating the central
weight matrix W̄̄W̄W = {w̄1, ..., w̄n}. Here, the weight matrix for
the (t+ 1)-th epoch is:

W̄̄W̄W t+1 =
1

k

k∑
j=1

WjWjWj
t and bt+1 =

1

k

k∑
j=1

btj (9)

Hence, the output of the central model at (t+ 1)-th epoch:

f̂(xxx)t+1 = W̄̄W̄W t+1xxxT + bt+1

=⇒ f̂(xxx)t+1 =
1

k

k∑
j=1

WjWjWj
txxxT +

1

k

k∑
j=1

btj

=⇒ f̂(xxx)t+1 =
1

k

k∑
j=1

(
WjWjWj

txxxT + btj
)

=⇒ f̂(xxx)t+1 =
1

k

k∑
j=1

f̂(xxx)tj (10)

Let ejt denote the empirical error of the j-th model while
estimating some arbitrary instance on the t-th global epoch.
We assume this error to be a random variable with normal
distribution having mean zero, i.e., ejt ∼ N (0, s). Hence,
E(ejt) = 0 and V ar(ejt) = s. Let us denote the estimation
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Fig. 2. A visualization of (a) Underfitting, (b) A good fit, and (c) Overfitting scenarios, illustrating how the model changes if an arbitrary training data point
(x, y) is shifted to (p, q) by plotting the trained model before (solid line) and after (dashed line) the shift.

of the product of two trained models using two different data
chunks by c, i.e, E(ejt × elt) = c. So, we have:

E(e2jt) = V ar(ejt) + [E(ejt)]2 ⇒ E(e2jt) = s+ 0 = s (11)

Again for j, l ∈ {1, ..., k}, where j ̸= l, we have:

Cov(ejt, elt) = E(ejt × elt)− E(ejt)E(elt)
=⇒ Cov(ejt, elt) = c− 0× 0 = c

=⇒ Cov(f̂(xxx)tj , f̂(xxx)
t
l) = c− 0× 0 = c (12)

From Eq.(10) and Eq.(12), we can deduce:

V ar(f̂(xxx)t+1) =
1

k2
V ar

 k∑
j=1

f̂(xxx)tj


=

1

k2

k∑
j=1

V ar
(
f̂(xxx)tj

)
+

1

k2

k∑
i=1,l=1

k∑
i ̸=l

Cov
(
f̂(xxx)ti, f̂(xxx)

t
l

)
=

1

k2
sk +

1

k2
ck(k − 1) =

s+ c(k − 1)

k
(13)

Relevant proofs related to the derivation of Eq. 12 and 13
are provided in Appendix A. Eq.(13) provides us with an
interesting insight. If the two edge models are highly correlated
i.e., their predictions and empirical error are very close to
each other we can assume s ≈ c. Hence, the variance of
the central model at (t + 1)-th epoch can be reduced to:
V ar(f̂(xxx)t+1) ≈ (s+ s(k− 1))/k ≈ s. On the other hand, if
the two models are very dissimilar the same expression gives
us: V ar(f̂(xxx)t+1) ≈ (s+0(k− 1))/k ≈ s/k. As V ar(ejt) =
V ar(f̂(xxx)t) = s, each of the edge models at epoch t has
a variance of prediction s, which means if the edge models
at epoch t are completely different, the variation of estimate
decreases by a factor of k on epoch (t+ 1). Consequently, if
the edge models are identically trained the variance remains
almost unchanged. This result is similar to the one proposed by
Breiman et al. [25] and Bühlmann et al. [26] through the idea
of ’Bagging’, which is a meta-algorithm aggregating multiple
model outputs. The analysis clearly shows that our approach
does not at the least worsen the problem of overfitting in

this scenario but rather improves the central model on each
epoch if certain conditions are met. However, in reality, the
edge models are neither completely different nor exactly the
same due to the relative distribution of the data subsets and
their shared model architecture. So, the degree to which D2C
ameliorates overfitting depends on the model architecture and
the correlation among the edge models. However, it is easy
to see that if the training data is contaminated by outliers
and random noise, the learned parameters from the different
portions of the data are more likely to be different from each
other. This is because the individual outliers and noise are not
highly correlated, hence distributing them among the subsets
likely results in significantly different samples in the subsets,
making the subsequent models different from each other. Our
results show that repeating the process in every global epoch
reduces overfitting in most cases. A limitation of this analysis
is that deep neural networks are mostly black boxes and their
architectures vary tremendously, which makes establishing a
generalized mathematical representation of them extremely
difficult. Hence, our assumption of a simple regression model
is not an exact reflection of the actual implementation. Despite
that, it describes an ideal and simple scenario where the
proposed method should improve the model. Moreover, it
also gave us the insight that this approach can be used in
conjunction with other overfitting reduction techniques such as
Dropouts(Srivastava et al., 2014) [4]. If dropouts are stacked
on top of our method in every iteration of local training,
the neurons are randomly removed with some probability
p(usually p = 0.5). This introduction of randomness ensures
that edge models are different from each other increasing the
chances of improvement when the models are aggregated.

IV. PROPOSED METHODOLOGY

A. Creating Training Subsets

To train multiple Neural Networks parallelly using different
subsets of the data, we need to divide the whole training set
into multiple shards, and we also need multiple identical
models that will be used to train the different subsets.
These models will be denoted as Edge models in this paper.
At first, the training set is randomly shuffled and then divided
into multiple subsets, maintaining consistent class distribution.
Each subset is then fed into a separate edge model with
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identical neural network architecture and trainable parameters
to enable parameter averaging.

B. Training & Averaging of Trained Parameters

Instead of one training loop, the implementation of our
method requires two loops: an inner loop for subset training
which is nested within an outer loop that performs central
averaging. A central model with the same architecture as the
edge models is first initialized. In total, we have one Central
Model and N Edge models, all of which share an identical
architecture, where N is the number of subsets we have
divided the training set into. Initially, these identical model
objects are built and loaded for each training subset. Within
the inner loop, each edge model is iteratively trained on its
subset for a specified number of local epochs. Then, the edge
models’ parameters are scaled based on their data fraction
and added to a local weight list. In the outer loop, these
scaled parameters are averaged, updating the central model’s
parameters. Each edge model’s weights are then reinitialized to
match the central model, completing a global training epoch.
This process repeats over several global epochs, with weighted
parameter averaging to account for the data fraction of each
subset. The whole process is summarized in Figure 3, and the
pseudo-code to implement D2C is provided in Algorithm 1.

C. Global Hyperparameter Tuning

Tuning the overall model consists of two stages. Firstly,
the edge model and its hyperparameters should be tuned
using a subset/entire training set and the validation set to
find a suitable model to train each training subset. Next, that
base model is utilized to tune the Central model. The new
global hyperparameters that need tuning, in this case, are the
Number of Subsets of the Training Set and the Number of
Epochs before each round of Global Averaging. Testing for
different values for these hyperparameters, the implementa-
tion, and the evaluation of our method are done using the best
combination. The appropriate number of training subsets can
be determined first by varying the number of training subsets
and observing the performance metrics like test/validation
accuracy, F1 score, log loss, and also the validation loss curve.
The appropriate number of training epochs in each subset
before the averaging is done each time is likely to be a small
number (1 ∼ 3) since the edge model can quickly overfit the
training subset with a reduced size. So, it makes more sense
to set a small number of epochs initially and tune the number
of training subsets. Once the number of subsets is determined,
the same process can be repeated by varying the number of
training epochs and determining the appropriate value of it.

V. EXPERIMENTAL SETUP

A. Datasets

For image classification tasks, we employed three widely
used benchmark datasets: CIFAR-10 [14], MNIST [7], and
Fashion MNIST [12]. CIFAR-10 provides a challenging
image classification task with 60,000 32x32 RGB images
across 10 categories. MNIST offers a simpler task with

Algorithm 1 Divide2Conquer

Input: Training dataset D, Number of subsets N , Local
epochs E, Global epochs Eglobal, Batch size B, Learning
rate lr
Output: Central model Mc with aggregated weights

function Divide2Conquer(D, N , E, Eglobal, B, lr)
Shuffle the dataset D
Divide D into N subsets: {D1, D2, . . . , DN}, main-

taining class distributions
Initialize central model Mc with parameter vector θc

for i = 1 to N do
Initialize edge model Mi with θi = θc
Set scaling factor si =

|Di|
|D|

end for
for g = 1 to Eglobal do

Initialize weight accumulator Wcentral = 0
for i = 1 to N do

Set θi = θc
for e = 1 to E do

Train Mi on Di using batch size B and
learning rate lr

end for
Obtain updated weights θi from Mi

Scale weights: θi = si · θi
Accumulate scaled weights into Wcentral:

Wcentral = Wcentral + θi
end for

Compute averaged central weights:

θc =
1∑N

i=1 si
Wcentral

Update central model Mc with new weights θc
end for
return central model Mc

end function

70,000 28x28 grayscale images of handwritten digits. Fashion
MNIST presents a more complex variation with 70,000 28x28
grayscale images of fashion items. To address the overfit-
ting challenge in facial expression recognition, we utilized
the FER-2013 [16] dataset, which comprises over 35,000
grayscale images of seven basic emotions. The diverse and
noisy nature of this internet-sourced dataset makes it particu-
larly suitable for evaluating generalization performance.

For audio-based tasks, we created a comprehensive dataset
by combining TESS [19], CREMA-D [20], and RAVDESS
[21]. This dataset encompasses 14 emotion classes, offering a
diverse range of emotional expressions and recording condi-
tions. By merging these datasets, we aim to improve model
generalization by mitigating biases and limitations inherent in
individual datasets.

To test our method on text data, we employed the AG
News [22] dataset, which consists of approximately 127,600
news articles categorized into four balanced classes: World,
Sports, Business, and Science/Technology. This dataset pro-



7

Fig. 3. D2C at a Glance – Training on each subset, averaging the trained
parameters, setting the Central model parameters to these values, and sharing
the averaged parameters back to the Edge models to keep the loop running.

vides a large-scale, real-world benchmark for evaluating text
classification models, particularly in the context of Big Data.

B. Experimental Details

1. Image Classification: At first, all the images are reshaped
and normalized. We applied one-hot encoding to the labels to
use cross-entropy loss later. We split the training data into
training and validation sets using Scikit-Learn. We then di-
vided the training set into multiple subsets. Before constructing
the model, processing each training subset into tensors, and
batching them was our last step. Each of our edge models was
comprised of 4 Convolutional (32 to 256 kernels progressively)
and MaxPooling layer (2X2) blocks followed by one fully
connected hidden layer (128 neurons). Each block contained
two identical convolutional layers and one pooling layer.

2. Audio Classification: At first, we combined the paths of
the files of our three datasets into a single CSV file. Then we
read the WAV files as time series and applied white noise.
Then we converted the 1D time series into 2D Log Mel
Spectrograms to capture the audio signals’ time and frequency
domain features. We treated the resulting data as 2D images,
and then the remaining steps were the same as we mentioned
in the case of the Image classification tasks.

3. Text Classification: In this case, we created a corpus
using all the words occurring in our training dataset. Then we
made a word index and word embedding for all the words in
the corpus. After that, we created word sequences using that
word embedding for each data instance. We applied padding
to make each training data point equal in length. In the case

of these 1D text sequences, the edge model we used consisted
of 3 bidirectional LSTM layers(128, 64, and 32 units) and
two dense layers(128 and 64 neurons) followed by the output
layer. It took the embeddings as input, and we used the
100-dimensional version of GloVe from Stanford for these
embeddings.

In all cases, we used a 90-10 Training–Validation split,
Adam optimizer, and applied dropouts and batch normalization
layers. This is important to test for D2C’s effectiveness when
used on top of other methods that address overfitting. We used
the predefined test sets for testing.

VI. RESULTS AND DISCUSSIONS

We will use loss and accuracy curves, Accuracy, F1 Score,
AUC-ROC, and log loss to analyze the results and evaluate our
method. We also varied the two new global hyperparameters
we mentioned in the previous section: the Number of Subsets
of the Training Set and the Number of Epochs before each
round of Central Averaging. To refer to them concisely, we
will use the variables NNN and EEE respectively in this section.

A. Visualizing Decision Boundary

At first, we will visualize the change in decision boundaries
due to applying the D2C method and analyze the findings.
We used a synthetic binary classification dataset to simulate
a simple decision boundary. This dataset was created using
the Scikit-Learn library. Then the 240-sample large dataset
was divided into a training and a test set using a 75-25 split.
The neural network architecture we used for these experiments
comprised three hidden layers having 100 neurons each. No
regularization or data augmentation was used for decision
boundary visualization, to observe the effect of D2C explicitly.

At first, we adopted the centralized, traditional approach and
fed the training dataset to the sole model. After training, we
got the decision boundary shown in Figure 4a.

As we can see, the decision boundary for the traditional
approach is highly complex and non-linear here. The model
creates intricate regions to distinguish between the two classes.
The boundary closely follows individual points, resulting in
a jagged, convoluted shape. The complexity of the decision
boundary suggests that the model is overfitting to the training
data. It is trying too hard to separate every point, including
noise, rather than focusing on general patterns in the data.
Evidence of overfitting is seen in how the model creates
small pockets of blue in the red region and vice versa. This
indicates the model has likely memorized the data rather than
learning generalizable patterns. This means that this approach
is likely to produce excellent results on training data. Still, it
is likely to struggle with new, unseen data due to its sensitivity
to specific details in the training set. The highly irregular
boundary reflects poor generalization ability.

Then, to see the effect of D2C on decision boundaries, we
divided our training set into multiple subsets and trained them
parallelly using identical Edge Models. Figure 5 shows the
decision boundaries we got from each edge model.

As we can see, the decision boundaries from the edge
models are still complex, containing intricate regions following
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(a) No Subsets (Traditional) (b) N = 3 (D2C)
Fig. 4. Decision boundary Visualization with the Traditional approach vs. the Divide2Conquer method.

Fig. 5. Decision Boundary from the edge models trained on each subset after dividing the training data into 3 subsets applying the D2C method.

individual noisy data points. However, each of these noisy
samples occurs only once in one of the subsets, affecting
the corresponding edge model. So, irregularity around an
individual noisy sample does not affect all the edge models but
rather only one of them. Hence, after averaging the weights,
the impact of the individual outliers should be diluted.

To verify, the trained weights from each subset were av-
eraged to get the final weights for the Central Model. The
resulting decision boundary is shown in Figure 4b.

We can see that the decision boundary from the central
model of D2C is much simpler, dividing the feature space
almost diagonally. This suggests a less flexible, more gen-
eralized model due to averaging the weights from multiple
subsets. This boundary is smooth and does not follow the exact
positions of individual data points as closely. The model is
more generalized, focusing on the overall trend in the data
rather than trying to accommodate every single datapoint,
exhibiting much less overfitting compared to what we saw
in the traditional approach using the same model architecture.
By averaging the weights from different subsets, the model
smooths out the noise in the data and prevents overfitting to
specific training samples. An individual noisy sample does not
affect all the edge models in D2C, and its impact is diluted
through averaging. This leads the central model to create a

decision boundary based on the more common patterns present
in all the subsets, ensuring better generalization. Further proof
of this generalization is seen in the training and test accuracies
for the traditional approach and D2C using different numbers
of subsets. We summarize these accuracies in Table I.

TABLE I
PERFORMANCE OF THE TRADITIONAL APPROACH VS DIFFERENT VALUES

OF N USING THE D2C METHOD.

Model Settings Training Accuracy Test Accuracy

No Subsets 0.9944 0.6833
N=2 (2 Subsets) 0.7611 0.75
N=3 (3 Subsets) 0.7944 0.8333
N=4 (4 Subsets) 0.7889 0.8333

As we can see, we got almost perfect accuracy on the
training set with the traditional approach. However, the sig-
nificant drop in test accuracy (0.6833) proves that the model
is overfitting to the training data. When we use D2C with 2,
3, or 4 subsets, we observe a clear improvement and a much
better balance between the training and test accuracies. For
all these cases, the training and test accuracies are similar,
and the test accuracy for 3 or 4 subsets (0.8333) surpasses
that of the traditional approach by a significant margin. This
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indicates that splitting the data into 3 or 4 subsets provides
a good balance between learning patterns from training data
and reducing overfitting to improve the model’s ability to
generalize to unseen data.

Our observations prove that models using the D2C
approach perform better on unseen data, as they avoid
overfitting by keeping the decision boundary simple and fo-
cusing on capturing the broader, more consistent patterns
in the data. So, D2C can be seen as yet another technique to
reduce overfitting. However, several other techniques address
overfitting. So, whether using D2C on top of other regulariza-
tion and augmentation techniques (such as dropouts) improves
the performance of a model is the key question in application
level. In the following subsections, we will investigate this
using the architectures (incorporating regularization methods
like dropouts in the edge models) we described in the previous
section on several datasets from different domains.

B. Analyzing Loss & Accuracy Curves

We will analyze the results obtained from our experiments
from the 3 different domains. The loss curve is a definitive
indicator of overfitting. As we saw in Eq. (6), The
validation/test loss truly represents the true error of the
model. So we will monitor the validation loss curves from the
different experiments we performed to compare and analyze
if D2C improves the generalizing performance, in the form
of minimizing the validation loss as the training progresses.

Image Classification: Let us first take a look at the
loss curves generated using the CIFAR-10, Fashion MNIST,
MNIST, and FER2013 datasets. For now, we will keep the
number of epochs before each round of central averaging, EEE,
equal to 1. It will ensure a proper comparison between the
traditional method and our proposed method while varying
the number of subsets, NNN . In our experiments, how much
we varied N depended on the performance (Loss curve,
Accuracy) trend as we increased N , the number of subsets. In
the case of all the datasets, we stopped varying N whenever
we observed a definitive performance drop with increasing
N. For example, in the case of CIFAR-10, we varied N in
the range of 1 to 9.

As we can see from Figure 6 and Figure 9, the validation
loss keeps decreasing with each epoch for longer when using
our proposed D2C method on these datasets but starts to
increase after very few epochs again in the case of traditional
NN implementations using the entire training set. In Figure 7,
we can see that D2C with 9 subsets almost entirely eliminates
the trend of an increasing loss after a few epochs. In ma-
chine learning, overfitting is marked by a model’s increasing
validation loss after a certain number of training epochs,
indicating that the model has started to capture noise and
specific variations in the training set that do not generalize
to new data. A model that reaches this overfitting point later,
meaning it maintains a lower validation loss over a longer
period, suggests it is better regularized or has a complexity that
is well-suited to the underlying patterns in the data. A model
with a delayed overfitting point continues to find generalizable

Fig. 6. Validation loss curves for the traditional method & the D2C method
for different numbers of subsets, N, on CIFAR-10.

Fig. 7. Validation loss curves for the traditional method & the D2C method
for different numbers of subsets, N, on Fashion MNIST.

Fig. 8. Validation loss curves for the traditional method & the D2C method
for different numbers of subsets, N, on MNIST.

patterns within the data through many epochs, highlighting that
it remains in a generalization phase for longer, rather than
immediately entering an overfitting phase. We can also see
that, in all these cases, dividing the training data into more
and more subsets delays and slows down the abrupt increase
in validation loss as the training progresses. For example, in
the case of CIFAR-10, the loss curve generated using the
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Fig. 9. Validation loss curves for the traditional method & the D2C method
for different numbers of subsets, N, on FER2013.

traditional approach without dividing the training data (no
subsets) reaches its minimum, 0.536, at around 16 epochs.
Then it keeps increasing and reaches 0.77 by the end of 100
epochs. As we set the number of epochs before each round
of central averaging, E = 1, each central epoch is equivalent
to one epoch in the traditional approach. For the number of
subsets, N = 3, the loss curve reaches its minimum, 0.462, at
around 21 epochs and then it keeps increasing and reaches0.64
by the end of 100 epochs. When we further divided the
training data into more subsets, setting N = 9, the loss
curve reaches its minimum,0.47, at around 46 epochs and
then it keeps increasing and reaches 0.585 by the end of 100
epochs. So, clearly, the convergence becomes slower, and the
abrupt increase of validation loss is minimized as we divide
the training set into more and more subsets, which indicates
reduced overfitting.

Also, D2C manages to maintain a lower validation loss in
general in all cases, including MNIST as we can see from
Figure 8. The minimum value of loss that each of the cases
discussed above also tells a similar story. The more subsets we
divide the training set into, the less the validation loss we can
observe from the curves. When a model maintains a lower vali-
dation loss during training, it indicates that the model is able to
generalize well to unseen data. Theoretically, overfitting occurs
when a model becomes overly complex relative to the data it is
learning, allowing it to capture not only meaningful patterns
but also specific noise or minor irregularities unique to the
training set. This focus on noise causes the model to perform
poorly on new data, which is reflected in a higher validation
loss or an accelerated rise in validation loss. In contrast, a
model that keeps validation loss lower while training likely
has a structure that is well-suited to the data’s true underlying
patterns without becoming excessively sensitive to its unique
characteristics. By maintaining a lower validation loss, the
model demonstrates an ability to generalize—learning patterns
that extend beyond the training set and apply well to validation
data. This suggests that the model has achieved a balance,
where it is complex enough to capture essential relationships
within the data but not so complex that it becomes reliant
on details that do not generalize. Consequently, a model that

sustains a lower validation loss is theoretically overfitting
less, as it shows a stronger alignment with the data’s general
structure rather than its idiosyncrasies. So, we can conclude
that our proposed method manages to bring down the valida-
tion loss during training compared to the traditional method,
which is a definitive sign of better generalization and reduced
overfitting. We can further conclude that this reduction in
validation loss becomes more apparent as we increase N ,
the number of subsets. The most clear illustration of this
phenomenon is seen in the case of FER2013 (Figure 9). The
Facial Expression Recognition task using the FER2013 dataset
is prone to overfitting to a great extent. Dividing the training
set into an increasing number of subsets evidently minimizes
that overfitting. So, dividing the training set into more and
more subsets helps reduce overfitting, an observation that is
consistent with what we saw in Eq. (13). The more the number
of subsets (k in that equation), the less the variance, s/k, for the
best-case scenario. Hence, with the decrease in variance comes
the decrease in overfitting. Also, as we saw before, the true
error, represented by validation loss in this case, is minimized
using D2C, which proves our hypothesis and shows that D2C
is indeed effective in treating the problem of overfitting.

Fig. 10. Validation accuracy curves for the traditional method & the D2C
method for different numbers of subsets, N, on Fashion MNIST.

However, the loss curve isn’t the only important factor
during the training process. The relation between log loss and
accuracy may not be so linear. That is why it is important
to observe the validation accuracy too. As we can see from
Figure 10, for all the different values of the number of subsets,
N , even though the loss reaches its minimum much earlier, the
accuracy shows an increasing trend (even if slightly) almost
throughout the entire training process, right up until the 60th
epoch. This shows why continuing training for a significant
period might be necessary even if the validation loss starts
increasing. This also shows why early stopping based on loss
curves may not be a good idea in both cases: the traditional
approach and the D2C method. This is something we observed
in the cases of all these datasets. Also, we can notice a visible
improvement in terms of validation accuracy in Figure 10. At
the very least, dividing the training set into multiple subsets
ensures that the maximum accuracy is attained while keeping
the log loss relatively in control, which characterizes a more
confident and robust model with better generalization ability.
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There is another interesting aspect of the validation loss
curve here. As we can see from Figure 8, the validation loss
curve generated using the traditional approach deviates much
more than the ones generated using the D2C method. A curve
that does not fluctuate much after converging suggests that
the model has reached a stable state. This stability is often a
sign of robustness, meaning the model is not overly sensitive
to slight variations in the data or training process. Dividing
the dataset into more and more subsets results in smaller
and smaller deviations in the validation loss curve. This was
evident in previous loss curves too, to a lesser extent. This
proves that dividing the training set into multiple subsets not
only improves accuracy and loss but also brings stability and
consistency to the loss/accuracy curves.

Let us also take a look at the validation loss curves generated
using FER2013 while keeping the number of subsets, N ,
constant and varying the number of local epochs before each
round of central averaging, E. We varied E between 1 to 3
and Kept N constant at 2 and 3 separately.

Fig. 11. Validation loss curves for different numbers of epochs before each
round of central averaging, while keeping the number of subsets, N = 2 & 3.

We can see from Figure 11 that when we vary the number of
epochs before each round of central averaging, E, there is no
clear indication of any kind of change in the trend or the rate of
change in the validation losses as the training progresses. This
is unlike when we varied the number of subsets, N keeping E
constant, where we saw that increasing the number of subsets
delayed and minimized the increase in validation loss as the
training progressed quite clearly. Also, the convergence got
slower. But here, for both N = 2 (shades of blue) and N = 3
(shades of green), the trends from the validation curves are
quite similar for different values of E throughout the training
phase. In light of the above observations, we can conclude that
varying the number of epochs before each round of central
averaging, E does not have any obvious implications on log
loss as we saw in the case of varying the number of subsets,
N . However, an increased number of local epochs before each
round of central averaging means more scope for learning
from each of the subsets before averaging, sometimes even
overfitting on a particular subset a bit more. We will observe
the effect of varying the number of epochs further in the later
subsections when we observe the final accuracy and log loss
in each case. The implication of varying E is likely to be

different on different datasets from different domains as we
will see in the case of the number of subsets too.

Audio Classification: Overfitting is a common problem in
audio classification tasks. But it is more apparent when the
model is trained on a particular dataset, and then tested on
data from a different source. One way of tackling this issue is
by combining datasets to increase the diversity in both training
and test/validation data. We combined the datasets TESS [19],
CREMA-D [20], and RAVDESS [21] for this task. Let us take
a look at the validation loss and accuracy curves generated
using this Combined Audio dataset.

Fig. 12. Validation loss curves for the traditional method & the D2C method
for different numbers of subsets, N, on the Combined Audio dataset.

As we can see from Figure 12, there is overfitting to some
extent in all cases, which causes the validation loss to creep
up after a few epochs but the rate at which this phenomenon
takes place is much less when the training set is divided into
multiple subsets. Once again, the rate of increase in validation
loss goes down as we increase the number of subsets. Even
though we converted the 1D time series audio files to 2D
Log-Mel spectrograms to form something like an image, the
classification based on these Mel-specs differs greatly from
traditional image classification. So, the overfitting-resistant
nature of models using our proposed method being apparent
in this case too is a very promising sign. However, the small
size of this dataset may not be ideal in the context of applying
D2C. We will analyze it in detail in the next subsection based
on several performance metrics.

Text Classification: Text classification is an important case
study when it comes to testing the Divide2Conquer method.
For both image classification and audio classification, we used
2D data and CNN to carry out the tasks. But text classification
deals with 1D sequences, and as we mentioned in the previous
section, we will use bi-directional LSTM in this case. We
used AG News [22], a benchmark dataset to test our method
primarily in the NLP domain. Let us observe the validation
loss and accuracy curves generated using the AG News dataset
first.

The loss and accuracy curves generated for AG News
depict by far the clearest picture in terms of the improve-
ments brought by the proposed method over the traditional
monolithic approach. The loss curve from Figure 13 shows
the trend we observed in almost all other cases: dividing the
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Fig. 13. Validation loss curves for the traditional & the D2C method for
different numbers of subsets on AG News.

Fig. 14. Validation accuracy curves for the traditional & the D2C method for
different numbers of subsets on AG News.

training data into more and more subsets delays and minimizes
the increase in validation loss as the training progresses. The
convergence though, slows down a bit in this case too. More
importantly, with no subsets, the validation loss shoots up
sharply after around 8 epochs, which indicates overfitting and
impacts the accuracy too as the training progresses as we can
see from Figure 14. However, when we use D2C, the sharp
increase in the validation loss is mitigated drastically. Even
with only two subsets, the improvement is quite significant.
When the number of subsets is increased further to more
than two, the loss curve becomes quite stable, almost com-
pletely eliminating the increasing trend and showing consistent
improvement as the training progresses. The accuracy curve
(Figure 14) also shows clear indications that D2C improves
over the traditional approach. With the traditional approach,
the accuracy too starts deteriorating after around the 14th
epoch, indicating severe overfitting, an issue that no longer
exists when we use D2C for any value of N or E.

The experiments on all these datasets from 3 different
datasets prove that using the D2C method can indeed address
overfitting and control the abrupt increase of true error in the
form of maintaining a lower validation loss during training.
This also shows that D2C works well in different domains
and a diverse set of tasks.

C. Accuracy, F1 Score, AUC-ROC, and Log Loss

We evaluated our proposed D2C on test sets using Accuracy,
F1 Score, Log Loss, and AUC-ROC to capture a compre-
hensive view of model performance in terms of correctness,
class balance, prediction confidence, and discrimination abil-
ity. Reporting these final metrics on test sets was essential
to confirm that improvements generalized well beyond the
training and validation data, verifying true effectiveness in
unseen scenarios. We used the average from multiple repetitive
runs (to test for repeatability) for each of these metrics. We
used the provided test sets with each of the datasets for
proper comparisons. In the tables, the top row represents
the traditional centralized approach and the rest of the rows
represent different variations of the D2C approach. The bold
entities represent the best performance in the tables.

Image Classification: Let’s take a look at the performance
metrics from the benchmark image classification datasets we
primarily used using different settings (the traditional approach
and the D2C method with different values of N and E).

TABLE II
PERFORMANCE METRICS WITH TRADITIONAL APPROACH VS. DIFFERENT

SETTINGS USING THE D2C METHOD ON CIFAR-10.

Model Settings Accuracy F1-Score Log Loss AUC-ROC

No Subsets 0.8596 0.8591 0.7346 0.98697
N=2, E=1 0.8611 0.8611 0.7042 0.98693
N=3, E=1 0.8613 0.8609 0.6682 0.98704
N=4, E=1 0.8586 0.8583 0.6516 0.98690
N=5, E=1 0.8552 0.8551 0.6389 0.98628
N=7, E=1 0.8539 0.8535 0.6198 0.98640
N=9, E=1 0.8531 0.8525 0.6068 0.98605

TABLE III
PERFORMANCE METRICS WITH TRADITIONAL APPROACH VS. DIFFERENT

SETTINGS USING THE D2C METHOD ON FASHION MNIST.

Model Settings Accuracy F1-Score Log Loss AUC-ROC

No Subsets 0.9314 0.9315 0.3467 0.99559
N=2, E=1 0.9323 0.9319 0.3460 0.99549
N=3, E=1 0.9330 0.9329 0.3179 0.99545
N=3, E=2 0.9319 0.9316 0.3303 0.99552
N=3, E=3 0.9337 0.9337 0.3225 0.99590
N=5, E=1 0.9322 0.9321 0.2692 0.99589
N=7, E=1 0.9338 0.9334 0.2467 0.99584
N=7, E=2 0.9305 0.9304 0.2575 0.99600
N=9, E=1 0.9323 0.9323 0.2341 0.99600

As we can see from Table II, Table III, and Table IV, the
best accuracy, MCC and AUC-ROC were achieved using the
D2C method for all three datasets. For CIFAR-10, the number
of subsets, N , was 3 for the best model in terms of accuracy.
The number of epochs before each round of central averaging,
E, was just 1. This approach showed an improvement with
an accuracy of 86.13% over the traditional approach with no
subsets, which yielded an accuracy of 85.96%. Initially, the
accuracy improved as we increased the number of subsets,
but suffered a consistent drop after it was further increased
past 3. As we discussed, dividing the training set into too
many subsets may impact training negatively due to a lack
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TABLE IV
PERFORMANCE METRICS WITH TRADITIONAL APPROACH VS. DIFFERENT

SETTINGS USING THE D2C METHOD ON MNIST.

Model Settings Accuracy F1-Score Log Loss AUC-ROC

No Subsets 0.9952 0.9952 0.0258 0.99995
N=2, E=1 0.9957 0.9956 0.0271 0.99995
N=3, E=1 0.9958 0.9958 0.0240 0.99998
N=3, E=2 0.9951 0.9950 0.0250 0.99996
N=5, E=1 0.9957 0.9956 0.0202 0.99998
N=7, E=1 0.9951 0.9950 0.0215 0.99997
N=9, E=1 0.9957 0.9957 0.0179 0.99998

N=11, E=1 0.9959 0.9959 0.0161 0.99999
N=11, E=2 0.9958 0.9958 0.0170 0.99998

of representative samples. The experimental outcomes show
further evidence of that in this case.

For Fashion MNIST too, the best accuracy, MCC, and
AUC-ROC were achieved using our proposed Divide2Conquer
method. The number of subsets, N , was 7 in this case for the
best model in terms of accuracy. The number of epochs before
each round of central averaging, E, was once again just 1. This
approach again showed an improvement with an accuracy of
93.38% over the traditional approach with no subsets, which
yielded an accuracy of 93.14%. An increasing trend is visible
in accuracy as we increase the number of subsets till it reaches
the best conditions with N = 7.

In the case of MNIST too, the best accuracy, MCC, and
AUC-ROC were achieved using our proposed method. The
number of subsets, N , was 11 in this case for the best model.
The number of epochs before each round of central averaging,
E, was 1. The improvement of 0.07 in error rate over the
traditional approach is significant for the MNIST dataset. In
this case, the least amount of log loss is also achieved with
the best model in terms of accuracy.

We can also see that as we increase the number of subsets,
N , there is a clear trend of decreasing log loss. As we
discussed earlier, increasing the number of subsets further
minimizes the effect of noise and outliers. The decrease in
log loss is a result of that phenomenon. Even though the
best model isn’t usually selected based on log loss values,
in the case of similar accuracy (for example, the accuracies
for N = 3, E = 3 and N = 7, E = 1 in Fashion MNIST
dataset), the best model can be selected based on log loss.
Log Loss evaluates how well the model predicts probabilities,
penalizing confident but incorrect predictions, which is critical
for understanding model reliability. A lower log loss means a
more robust and confident model, so the model with a lower
log loss is preferred when the test accuracy or F1 score is
similar.

The comparison of subset numbers in the best-performing
models across CIFAR-10, Fashion MNIST, and MNIST
provides critical insights. For CIFAR-10, the optimal model
utilized only 3 training subsets, while the best models for
Fashion MNIST and MNIST required 7 and 11 subsets,
respectively. Notably, increasing the subset count beyond 3
led to declining accuracy for CIFAR-10—a trend not observed
with the other datasets. This discrepancy is likely due to

the distinct characteristics of each dataset. While all contain
10 classes, CIFAR-10, a smaller dataset with RGB images
and complex class representations, presents a more challeng-
ing classification task compared to the grayscale images of
Fashion MNIST and MNIST. Consequently, effective training
on CIFAR-10 demands larger sample sizes per subset, and
when these subsets become too small, performance degrades.
In contrast, Fashion MNIST and MNIST, identical in dataset
size, differ in task complexity, with Fashion MNIST presenting
a slightly more challenging classification task than MNIST.
This complexity results in the optimal Fashion MNIST model
requiring fewer subsets than MNIST, as each subset’s sample
size needs to be sufficient for adequate training.

This analysis suggests a key principle for applying the D2C
method effectively: to divide training data into more subsets,
datasets must be large enough to allow each subset ample train-
ing data. Larger datasets benefit more from divided training,
requiring more subsets to achieve optimal performance.

TABLE V
PERFORMANCE METRICS WITH TRADITIONAL APPROACH VS. DIFFERENT

SETTINGS USING THE D2C METHOD ON FER2013.

Model Settings Accuracy F1-Score Log Loss AUC-ROC

No Subsets 0.6498 0.6420 2.0112 0.89934
N=2, E=1 0.6511 0.6394 1.9101 0.89875
N=2, E=2 0.6567 0.6444 1.8450 0.9032
N=2, E=3 0.6490 0.6389 1.8718 0.8975
N=3, E=1 0.6491 0.6356 1.6540 0.90104
N=3, E=2 0.6538 0.6465 1.6990 0.89870
N=3, E=3 0.6539 0.6428 1.7315 0.9002
N=5, E=1 0.6500 0.6368 1.5157 0.90153
N=7, E=1 0.6521 0.6432 1.4821 0.90148

FER2013, a challenging dataset for facial expression recog-
nition, represents a task that is particularly prone to overfitting.
As seen in Table V, our proposed D2C method outperformed
the traditional approach and achieved the highest accuracy,
MCC, and AUC-ROC, with the best-performing model using
only 2 subsets (N = 2) and 2 training epochs before each
central averaging step (E = 2). D2C yielded a notable accu-
racy improvement, reaching 65.67% compared to 64.98% in
the traditional model without subsets. Unlike previous datasets,
where a single epoch (E = 1) was optimal, FER2013 benefited
from 2 epochs, likely due to the dataset’s complexity, requiring
additional training time to capture meaningful features before
model averaging.

A decreasing trend in log loss was observed with more
subsets, though no consistent pattern emerged with varying
epochs (E). Additionally, due to FER2013’s class imbalance,
accuracy alone may not reliably indicate the best model, so, the
F1-score, a metric considering class-wise precision, provides a
valuable perspective. Interestingly, the optimal F1-score model
(3 subsets, E = 2) differs from the accuracy-optimized model,
with D2C achieving an F1 score of 0.6465 versus 0.642 in
the baseline model. This F1-score improvement underscores
D2C’s effectiveness in addressing overfitting, particularly in
class-imbalanced, complex tasks.

Audio Classification: Now let us take a look at the perfor-
mance metrics from the Combined Audio dataset.
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TABLE VI
PERFORMANCE METRICS WITH TRADITIONAL APPROACH VS. DIFFERENT

SETTINGS USING D2C ON THE COMBINED AUDIO DATASET.

Model Settings Accuracy F1-Score Log Loss AUC-ROC

No Subset 0.6953 0.6870 1.3419 0.96570
N=2, E=1 0.6942 0.6879 1.0811 0.96553
N=2, E=2 0.6908 0.6819 1.1636 0.9632
N=3, E=1 0.6920 0.6909 1.2032 0.96416
N=3, E=2 0.6874 0.6830 1.0033 0.96438
N=4, E=1 0.6921 0.6804 1.2840 0.96214

We can see from Table VI that in the Combined Audio
dataset, the highest accuracy was achieved using the traditional
training approach rather than our proposed D2C method.
The traditional model attained a 69.53% accuracy, slightly
outperforming the D2C approach, which reached 69.42%
with 2 subsets. Accuracy declined further as the number of
subsets increased, likely due to the smaller dataset size (11,632
samples), limiting effective data availability per subset. As
a result, dividing the dataset into smaller portions likely
impacted performance by reducing the sample count for each
class, a significant challenge given the dataset’s complexity
and diversity, as it combines samples from multiple sources.

However, despite marginally lower accuracy, the D2C
method showed reduced log loss, indicating a trade-off be-
tween accuracy and confidence in predictions. In cases of
comparable accuracy, lower log loss can be preferable as
it indicates more calibrated predictions. Moreover, given the
dataset’s class imbalance, the F1-score is a more reliable
metric here. The D2C approach yielded a slight improvement
in the F1-score (0.6909 vs. 0.687), indicating better general-
ization across classes. This suggests that D2C supports robust
classification with fewer, more distinctive errors, especially
in class-imbalanced, complex tasks like this one. In summary,
while D2C did not maximize accuracy, it achieved comparable
F1 performance with lower log loss, resulting in a model
that generalizes well and offers more confident predictions in
challenging, class-imbalanced datasets. However, dividing the
dataset into too many subsets does worsen the performance of
the models in this case.

This analysis leads us to the conclusion that to apply the
Divide2Conquer method effectively, the dataset needs to
be sufficiently large so that each of the subsets can have
enough training data. It is however noteworthy that even
with a comparatively smaller dataset, our proposed method
still shows some performance improvement in some metrics.

Text Classification: Finally, let us take a look at the
performance metrics from the AG News dataset.

We can observe from Table VII that, once again, the highest
accuracy and F1-score were achieved with our proposed D2C
method. The number of subsets, N , was 5 in this case for
the best model. The number of epochs before each round
of central averaging, E, was 2. The D2C method showed
a significant improvement with an accuracy of 92.95% over
the traditional approach with no subsets, which yielded an
accuracy of 92.43%. Using the D2C method decreased the
error by more than 0.5% in this case. Also, as we can see from

TABLE VII
PERFORMANCE METRICS WITH TRADITIONAL APPROACH VS. DIFFERENT

SETTINGS USING THE D2C METHOD ON AG NEWS.

Model Settings Accuracy F1-Score Log Loss AUC-ROC

No Subset 0.9243 0.9243 0.2611 0.98764
N=2, E=1 0.9291 0.9291 0.2556 0.98873
N=3, E=1 0.9288 0.9288 0.2520 0.98872
N=3, E=2 0.9275 0.9275 0.2567 0.98852
N=5, E=1 0.9293 0.9292 0.2412 0.98881
N=5, E=2 0.9295 0.9296 0.2451 0.98875
N=7, E=1 0.9271 0.9271 0.2353 0.98916

Table VII, the trend of a decreasing log loss as we increase
the number of subsets is visible here too. The best method in
terms of AUC-ROC also happens to be the model with the
highest number of subsets (7). It also seems that the log loss
increases a bit when we increase the number of epochs, E.

The effect of dividing the training set into multiple subsets is
the most apparent in this dataset compared to all the previous
ones. AG News, the largest dataset in our study, presents an
ideal case for D2C, as each class contains 30,000 samples.
This abundance of data per class allows for substantial division
without sacrificing subset size, which maintains the model’s
training stability while leveraging the regularizing effect of
partitioning and averaging. Consequently, every variation of
D2C (across all values of N and E) demonstrated accuracy
gains over the traditional approach, underscoring D2C’s suit-
ability for mitigating overfitting in text classification tasks.

In summary, D2C excels with large datasets like AG News,
where ample samples per class allow the model to benefit
from both training on robust subsets and reducing overfitting
through partitioning and averaging. This validates D2C’s po-
tential for significant impact in Big Data applications, where
traditional models often struggle to fully exploit available data.

D. Augmentation in D2C

Our experiments show that dividing training data into mul-
tiple subsets and applying central averaging results in less
overfitting and an improvement in performance metrics like
accuracy, F1 score, etc. However, we also saw that the training
subsets need to be sufficiently large so that each of the subsets
can provide enough training diversity to the edge models,
otherwise, the performance suffers a drop. When the dataset
is large, the proposed method works very well, but when the
dataset is smaller, this may cause issues in achieving optimum
performance.

One way to counter these issues is data augmentation. This
is a widely used technique to expand a dataset and prevent
overfitting. To minimize the effect of outliers and noise and to
prevent data leakage among the subsets, augmentation must
take place after dividing the dataset into multiple subsets.
The augmentation is then applied to each of the subsets.
That way, the augmented samples from one subset won’t
get mixed with another subset. This approach ensures the
separation of data in each of the subsets as well as the
expansion of training data, providing enough samples for all
the subsets, thus improving the overall performance. We tested
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this augmentation approach on the CIFAR-10 dataset for 3, 5
& 7 subsets. The augmentation methods we used were rotation,
horizontal flip, and shifting along both axes. Let us take a
look at the accuracies we achieved in each case and compare
them with the accuracies we got before without applying
augmentation.

Fig. 15. Test accuracies for different numbers of subsets, N, using the D2C
method on the CIFAR-10 dataset with and without Augmentation.

As we can see from Figure 15, the accuracy improved
significantly in each case after we applied data augmentation to
the subsets of the training data. The accuracy increased from
86.13% to 88.73% for 3 subsets. In the case of 5 subsets,
the improvement was even more, reaching 88.12% from just
85.52%. In the case of 7 subsets too, the accuracy increased
from 85.39% to 87.58%. This shows that data augmentation
techniques can be successfully applied when using the D2C
method, and they can effectively treat the problems that arise
when the size of the subsets becomes too small.

VII. LIMITATIONS

We have shown that our proposed D2C method treats
overfitting and shows an improvement over the traditional
approach in multiple domains and datasets. However, all these
come at a cost. Dividing the training set into multiple subsets
and training them all separately means repeating the whole
training process N times (N = number of subsets), albeit with
less data. This results in an increased training time. Let us take
a look at the following Figure 16 for MNIST.

Fig. 16. Time elapsed per epoch for the traditional approach and different
numbers of subsets, N, using the D2C method on the MNIST dataset.

The training was done using a V100 GPU in each of these
cases for fair comparisons. As we can see from Figure 16, the
time needed to train the models is the least in the traditional
approach, as expected. As we increase the number of subsets,
N , the time needed to complete each epoch of training
increases. However, it is important to note that the increase in
training time is not abrupt. It doesn’t increase proportionally
with N . For example, the time taken to train for one epoch
was 12.5 seconds in the case of the traditional implementation.
When the number of subsets, N , was 11, it took 40 seconds
to train for one global epoch. The training time increased
significantly, but it was nowhere near 11 times the time taken
in the traditional approach. So, even though the training time
increases, it doesn’t shoot up abruptly. It is important because
such an abrupt increase in training time could mean a big issue
when it comes to applying the Divide2Conquer method.

Lastly, it’s important to note that even if the training time
is more when using the D2C method, it doesn’t make any
difference at all in the post-training deployment stage, as the
edge models (like the one used in the traditional approach) and
the central model have the same number of weights, architec-
ture, and computational complexity. So, clearly, even if the
Training time increases while using the Divide2Conquer
method, the Inference time remains exactly the same as
the traditional approach.

VIII. CONCLUSION

Our study demonstrates that dividing training data into
multiple subsets and averaging the weights iteratively can
treat overfitting and produce significant performance gains
through stability and better generalization. In this paper, we
applied our proposed Divide2Conquer method and tested it
on multiple datasets from different domains. This method
outperformed the traditional approach in all the datasets in
terms of key metrics and showed significantly better resistance
against overfitting. The D2C method also showed a consistent
ability to mitigate the increasing trend of validation loss,
and to produce smoother decision boundaries. These results
prove our hypothesis of this method being able to help
generalize better and resist overfitting to be true. Moreover,
the Divide2Conquer method brings even more improvement
when the dataset is larger, outlining its promise in Big Data
scenarios, especially since D2C method can be applied on top
of other generalization techniques. Thus, the proposed D2C
method opens the door for future research and experiments
using this in several domains.
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APPENDIX A
RELATED PROOFS AND DERIVATIONS

Derivation of V ar(X) = E(X2) − (E(X))2 : Let the
random variable X denote the estimate of x. The variance
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of estimating this random variable is defined as the average
deviation of X from the expected value of our estimate, E(X),
where the deviation is squared for symmetry of difference. So,
the variance can be formulated as:

V ar(X) = E((X − E(X))2)

= E(X2 + (E(X))2 − 2X E(X))
(a)
= E(X2) + (E(X))2 − 2E(X)E(E(X))

= E(X2)− (E(X))2

(14)

Here, (a) is due to the linear nature of the expectation
operator, and E(E(X)) = E(X), because E(X) is not a
random variable.

Derivation of CoV (XY ) = E(XY ) − E(X)E(Y ) : Let
X and Y be estimations of two random variables x and y
respectively. The covariance of X and Y is defined as the
expected value (or mean) of the product of their deviations
from their individual expected values [35]. Hence,

Cov(X,Y ) = E((X − E(X)).(Y − E(Y )))

= E(XY −X E(Y )− Y E(X) + E(X)E(Y ))
(b)
= E(XY )− E(X E(Y ))

− E(Y E(X)) + E(E(X)E(Y ))
(c)
= E(XY )− E(X)E(Y )

− E(Y )E(X) + E(X)E(Y )

= E(XY )− E(X)E(Y )

(15)

Here, (b) is because expectation is linear and (c) is due
to considering, E(cX) = cE(X). Now if we consider two
continuous random variables X and Y which are independent,
i.e., X ⊥⊥ Y , then by the definition of expectation we have:

E(XY ) =

∫∫
xyf(x, y)dxdy

⊥⊥
=

∫∫
xyf(x)f(y)dxdy

=

∫
yf(y)

∫
xf(x)dxdy

(d)
=

∫
yf(y)E(x)dy

= E(X)

∫
yf(y)dy

= E(X)E(Y )

(16)

Here, (d) is because E(X) =
∫
xf(x)dx by definition.

From 15 and 16 we immediately have Cov(X,Y ) = 0 when
X ⊥⊥ Y .

Derivation of V ar(
∑k

i=1 Xi) =
∑k

i=1 V ar(Xi) +∑
1≤i ̸=j≤k Cov(Xi, Xj):

Let us consider the random variables X and Y and
arbitrary constants a, b . Using 14 we can write,

V ar(aX + bY ) = E((aX + bY )2)− (E(aX + bY ))2

= (a2 E(X2) + b2 E(Y 2) + 2abE(XY ))

− (aE(x) + bE(Y ))2

= (a2 E(X2) + b2 E(Y 2) + 2abE(XY ))

− a2(E(X))2 − b2(E(Y ))2

− 2abE(X)E(Y )
(e)
= a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

(17)

Here, (e) follows directly from 14 and 15. So Using 16
and 17 and generalizing for k random variables we can say:

V ar(

k∑
i=1

Xi) =

k∑
i=1

V ar(Xi) +
∑

1≤i ̸=j≤k

Cov(Xi, Xj) (18)
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