
AUTOMATED AUDIO VISUAL SPEECH CORPUS CREATION FROM PUBLICLY
AVAILABLE SOURCES FOR BANGLA LANGUAGE

Md. Mohaiminul Islam Farhan Tanvir Shafayat Ahmed Nafis Sadeq
Muhammad Abdullah Adnan

{mohaiminmahim, farhan.tanvir.utshaw, shafayat309, nafissadeq}@gmail.com,
adnan@cse.buet.ac.bd

Bangladesh University of Engineering and Technology (BUET)

ABSTRACT

The performance of an automatic speech recognition (ASR)
system can potentially benefit from other modes of data, such
as visual information related to lip movement. For developing
an accurate, robust, and efficient audio-visual speech recogni-
tion (AVSR) system we need a huge amount of labeled data.
But in most cases, developing these resources takes a huge te-
dious effort for manual annotation. In this paper, we present
our efforts to automatically develop an audio-visual speech
corpus for Bangla language. We have developed a novel ap-
proach for efficient, automated audio-visual corpus develop-
ment and for organizing the corpus for the speech recogni-
tion process. Using our automated approach we developed 25
hours of AVSR corpus for Bangladeshi Bangla. We make the
corpus and related source code publicly available. 1 2

Index Terms— Audio-Visual Speech Corpus, Multi-
modal Speech Recognition, Automated Corpus Development

1. INTRODUCTION

Speech recognition has become tremendously popular in re-
cent years to improve Human-Computer interaction. Being
the most popular language for the internet, speech recogni-
tion for English is far superior to any other language. For
Bangla speech recognition, there are limited resources out
there. More resources may help significantly in improving the
performance of Bangla ASR applications. Automatic speech
recognition (ASR) systems have seen an upward trajectory
in both their performance and accuracy. This is mostly due
to improvement in the field of deep learning, more available
data, and more capable hardware. Still, the need to improve
computer perception of human speech remains a top research
priority and also a desirable commodity in everyday life. This
goal is unreachable for computer systems if it relies solely on
the uni-modal data source for learning such as only audio-
based speech recognition systems. To perceive human speech

1Source code can be found here - https://github.com/Utshaw/AVSD2
2Generated corpus here - https://drive.google.com/file/d/1zVBIcX7N9-

iC2HvqmDe-oO46SGh4rlIK/view

seamlessly computer systems need to learn to extract speech-
related context from multiple modalities. Humans themselves
can extract speech context from several physiological cues
such as facial expressions, visual posture, voice modulation,
and body language, etc. Hence audio-visual speech recog-
nition has received more attention in recent years due to its
promising prospects.

For training and evaluating such deep learning systems,
a prerequisite is the construction of large audio-visual cor-
pora. Often for research purposes, small corpora are built
by manually collecting and labeling data on a small scale.
This process is tedious and highly inefficient. Moreover, the
collected data in controlled environments differ from sponta-
neous real-life behavior. However, there are a huge amount of
audio and video resources publicly available on the internet.
If these resources are utilized and processed correctly, we can
construct a large audio-visual dataset. Such vast resources
would also reflect spontaneous human speech behavior more
effectively than data collected in the studio environment. This
is an open-ended problem in audio-visual speech processing.
Such a large-scale database can be crucial for determining the
most effective AV feature vectors and training accurate clas-
sifiers. This paper presents a novel approach to automatically
process publicly available resources to extract, organize, and
label audio-visual data. We also include an audio-visual cor-
pus for Bangladeshi Bangla which has been created by the
proposed processing pipeline. Our main contributions are as
follows

• An automated approach to generating audio-visual
speech corpus in any language from publicly available
resources.

• A new approach for automated corpus generation using
unsupervised clustering algorithm for speaker diariza-
tion and detection of shot boundaries.

• We generate 25 hour AVSR corpus for Bangla lan-
guage. Our corpus contains speech samples of over
750 speakers.

• We make the AVSR corpus publicly available along
with the codes for automatic AVSR corpus generation.

We hope that this would allow and encourage other re-
searchers to generate similar corpora for other low re-
source languages.

The organization of this paper is as follows. Relevant
works are discussed in section 2, data selection preliminar-
ies in section 3, the detailed layout of our processing pipeline
in section 4, overview of our corpus in section 5, implementa-
tion and experimental setup in section 6, and conclusion and
future works in section 7.

2. RELATED WORK

Automated AV corpus generation is a relatively new area of
exploration. GRID[1] was one of the first AV corpora to con-
tain full sentences and was of decent size, but the data collec-
tion was in a controlled environment consisting of a relatively
small number of speakers. MODALITY[2] provided high-
quality video data but was neither automatically generated
nor used publicly available video resources. [3] used a multi-
staged pipeline to automatically generate the ‘Lip Reading
Sentences’ (LRS) corpus from a variety of BBC programs.
They used HOG-based face detection to detect faces in every
frame and a KLT tracker to group faces of individual speak-
ers. [4] used a similar process to construct the LRS2-BBC
dataset, the key difference being they used a CNN face detec-
tion scheme based on SSD (Single Shot MultiBox Detector)
instead of the more traditional HOG-based one. Both studies
used color histogram analysis among continuous frames to
detect shot boundaries. [5] followed up their previous work
by applying the same multi-staged pipeline on 400 hours of
TED and TEDx videos to obtain LSR3-TED corpus. [6] built
a filter-based pipeline system that heavily uses FlumeJava [7]
large parallel processing and follows [8] to run selectively
collected YouTube videos through multiple (eg.length, lan-
guage, clip quality) filters and uses color histogram classifiers
for face and shot boundary detection. The uniqueness of our
approach lies in the method that we use unsupervised clus-
tering group frames for each speaker(and isolate the primary
speaker). Then our process uses the frame annotation infor-
mation to detect shot boundary and frame continuity. The
same labeling information is then used for AV sync and au-
dio extraction. For a low resource language like Bangla, [9]
prepares a speech-to-text dataset from publicly available news
recordings and audiobooks.

3. PRELIMINARIES

We use publicly available TV news recordings collected from
YouTube raw video source in our system. The important thing
to notice that these recordings include one primary speaker
(I.e. news presenter) and several other secondary speakers
(e.g. reporters, featured people in reports, bystanders). That is
why shot boundaries are longer and shot changes less occur-
ring. Coincidentally, among publicly available Bangla videos,

Fig. 1. System Overview

this genre of videos is the most abundant and also covers a
wide array of topics and is spoken by a large number of indi-
vidual speakers. Such a selection of input videos assure that
data from a single topic or speaker would not outweigh oth-
ers.

4. OUR SYSTEM

The Figure below describes the overview of our whole pro-
cess. The goal of our process is to isolate the video seg-
ments where the primary speaker is active. It extracts and an-
notates these segments automatically, constantly taking raw
source video as input and appending it to the serialized and
meaningfully labeled dataset. We first separate the audio and
video streams from our source. From this point onwards both
streams are processed in parallel with the processed video
stream sends labeling information, which the audio stream
receives and utilizes to extract synchronized corresponding
audio segments. The video processing thread performs two
main actions. Firstly, it isolates the primary speaker segments
from the raw footage, which is a nonobvious process on its
own consisting of two steps- Facial image separation by a
pre-trained face detection model and an unsupervised image
clustering algorithm. Secondly, the process meaningfully la-
bels these segments and feeds the labeling information to the
audio processing thread. The audio processing thread firstly
uses a denoising autoencoder to suppress background noise
in the audio stream. After receiving labeling information this
thread extracts corresponding audio segments from the audio
stream. Both threads store these synchronized segments as
structured audio and video data. The detailed process of each
thread is explained in the following sections.

4.1. Data Collection

We collected publicly available Bangla news videos from
numerous YouTube channels. The goal behind this was

twofold. For once, Tv news recordings for the majority of the
duration focuses on a singular active speaker on the screen,
which is ideal for our processing method. On the other hand,
news recordings contain acoustic data of many different di-
mensions(e.g. Politics, sports, recent events). These would
guarantee the prevention of domain bias from one or few-
dimensional data. The process was also automated, using a
crawler which utilized the youtube-dl program for collecting
entire playlists from YouTube.A total of 1470 sample videos
were collected, with a combined duration of approximately
410 hours. hence, Avg. duration of the raw footage was 16.7
minutes.

4.2. Video Data Processing

Each frame from the source input video was extracted. Af-
ter that, a pre-trained face detection model was used to de-
tect faces in each of the frames. The face portion on each
of the frame was cropped. If multiple faces were detected in
some frames, the largest face was chosen. We assume that the
closest person to the camera is most likely the speaker in this
case. Then those face images were stored and labeled with
the frame number. In the next step, we used an unsupervised
clustering algorithm for the detection of the primary speaker’s
face. Here we extract the largest cluster among all the stored
faces in the previous step. Obviously, this specific face cluster
represents the primary speaker in our raw video. In the next
step, our goal is to obtain continuous video segments of the
primary speaker speaking (without the audio). So, we need
continuous frames. For that reason, we ran a linear search
in our primary speaker cluster. The image files in the cluster
were already labeled with their corresponding frame number.
We used this information to separate continuous at least 100
to at most 350 frames. These segments yielded video clips of
duration minimum of 4 secs to a maximum of 14 secs respec-
tively. These clips were then labeled with speaker id, utter-
ance id, and corresponding frame number. This labeling info
is then sent to the audio processing thread to extract respective
audio segments.

4.3. Audio Data Processing

Fig. 3 represents an overview of our audio processing thread.
This thread runs in parallel with the video processing thread
and is assigned with two main tasks. First of all, it reduces
the background noise of the input video stream. This is done
by standard techniques that analyze the MFCC feature space
of the audio file and tries to identify the noise portion of the
signal. In the second step, after retrieving labeling informa-
tion about frame continuity of the primary speaker from the
video stream the process extracts corresponding audio seg-
ments from the raw audio. Audio segments obtained in this
fashion are converted to 16 kHz mono channel WAV files with
a bit rate of 128 kbps. Converted audio files are organized and
stored according to the corpus structure.

Fig. 2. Video processing thread

Fig. 3. Audio processing thread

4.4. Automatic Transcription

Subtitles for Bangla news recordings were not publicly avail-
able, so we followed the automatic transcription process pro-
posed by [9] for transcription of speech data to text. We paired
speech, text by labeling them with the same name.

5. DATASET

Finally, the audio-visual corpus contains roughly 25 hours of
audio, video, and transcribed text with avg. duration of 8.52s
per file. Hence, the ratio of raw footage to processed video
is roughly 16:1. This ratio can be improved many times by
processing different types of youtube content such as product
reviews, vlogs as raw input. But the challenge, in that case,
is, these videos are not as abundant for all languages as news
recordings are. Moreover, excess of one specific video type
might introduce domain bias into the AV corpus. Collecting
raw video would then require a more sophisticated set of eval-
uation criteria. Table-1 and Table-2 summarizes the corpus
properties.

Metric Property or quantity
of files 10,563

Total duration 25 hours
Avg. duration 8.52 sec (min = 4 sec) (max = 14 sec)
of speakers 764
Audio format .wav, 16.1 kHz mono channel

Table 1. Audio data summary

Metric Property or quantity
of files 10,563

Total duration 25 hours
of speakers 764

Input video format 1280*720 pixels, FPS = 25
Extracted face size 55*55 pixels (±5%)

Extracted video Avg.[55*55(±5%)]
format(resized) FPS = 25

Table 2. Video data summary

6. IMPLEMENTATION AND EXPERIMENTS

6.1. System Setup

To evaluate the efficiency of our corpus generation process,
we perform the experiment on three machines with different
configurations. 410 hours of raw video data were processed
in each machine. The processing time along with correspond-
ing hardware configuration is shown in Table 3. All three
machines were running on Ubuntu 18.04 LTS operating sys-
tem. Computationally, the most expensive operation of the
entire corpus generation process is related to the face encod-
ing and clustering operation. Since we perform the operation
in the CPU, the speed largely depends on the CPU perfor-
mance. RAM size becomes important if we process video
with a large resolution. The speed of face encoding can be
further improved by using GPU based implementation, but
we do not use that for our experiment.

6.2. Face Detection Scheme

For detecting faces in each video frame we use a Caffe-
based face detector model that utilizes the OpenCV DNN
module. This DNN model was created with Single Shot
Detection(SSD)[10] framework using a similar architecture
to ResNet-10 as the backbone. It takes an image as input

Processor RAM GPU Time
(hours)

Pentium G4560 8 GB GTX 970 895
Core i5 9400f 12 GB RTX 2070 248
Core i7 8700k 16 GB RTX 2070 130

Table 3. Hardware Configuration

and creates a blob from it. The blob is passed through the
DNN to detect all the faces existing in the image. Each of
the detection has a confidence measure, which represents the
probability of correct face detection. We set the confidence
measure threshold to 60% to filter out weak detection.

6.3. Face Clustering Algorithm

Whereas other studies used feature-based trackers to identify
and group faces of an individual we use a different approach.
Our process runs an unsupervised clustering algorithm on the
face collected by the previous step. The algorithm is fairly
straight forward. Firstly it calculates the face encodings of all
the stored faces and generates a serialized encoding for the
face set. The encoding of each face are represented by a fea-
ture vector of length 128. After all the feature vectors are cal-
culated we need a clustering algorithm to group them. Algo-
rithms such as K-means clustering has to specify the number
of clusters beforehand. As there is no way of knowing how
many speakers would make an appearance in a video we de-
cided to use Density-based spatial clustering of applications
with noise (DBSCAN)[11]. DBSCAN algorithm groups data
points based on their distance in an N-dimensional space. We
calculate the Euclidean distance between the feature vectors
in a 128-d space and use this measurement to identify dense
regions (i.e clusters) in the data space. The maximum neigh-
bourhood distance within a cluster is set to 0.5 and minimum
number of samples in a cluster is 5. Ideally, each of these clus-
ters represents the faces of an individual present on the source
video. From this, we can determine the number of speakers
in a given video as well as identify them individually.
After we have obtained the face clusters we detect shot change
and shot boundaries. Most of the other works on this topic
does this by analyzing the change in color histogram between
frames. We go for a simpler yet much more efficient trick. As
we have annotated the face images with corresponding frame
numbers in section 6.2, we can easily check for frame conti-
nuity by label name and detect shot boundary. Frame number
information can also be used to extract corresponding audio
from the source video.

7. CONCLUSION AND FUTURE WORKS

In this work, we introduce a robust, accurate, automated
audio-visual corpus generation process that will help to solve
the resource constraint problem for speech recognition. We
develop an audio-visual speech corpus for Bangla and make
it publicly available. In the future, we will try to increase
the size of the AVSR corpus. We would also like to develop
a speech recognition architecture that can exploit an inde-
pendent speech corpus and another independent lip-reading
corpus simultaneously. This would allow us to utilize exist-
ing speech corpora for Bangla language along with our AVSR
corpus.

8. REFERENCES

[1] Martin Cooke, Jon Barker, Stuart Cunningham, and
Xu Shao, “An audio-visual corpus for speech percep-
tion and automatic speech recognition,” The Journal of
the Acoustical Society of America, vol. 120, no. 5, pp.
2421–2424, 2006.

[2] Andrzej Czyzewski, Bozena Kostek, Piotr
Bratoszewski, Jozef Kotus, and Marcin Szykulski,
“An audio-visual corpus for multimodal automatic
speech recognition,” Journal of Intelligent Information
Systems, vol. 49, no. 2, pp. 167–192, 2017.

[3] Joon Son Chung, Andrew Senior, Oriol Vinyals, and
Andrew Zisserman, “Lip reading sentences in the wild,”
in 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, 2017, pp. 3444–3453.

[4] Triantafyllos Afouras, Joon Son Chung, Andrew Senior,
Oriol Vinyals, and Andrew Zisserman, “Deep audio-
visual speech recognition,” IEEE transactions on pat-
tern analysis and machine intelligence, 2018.

[5] Triantafyllos Afouras, Joon Son Chung, and Andrew
Zisserman, “Lrs3-ted: a large-scale dataset for visual
speech recognition,” arXiv preprint arXiv:1809.00496,
2018.

[6] Brendan Shillingford, Yannis Assael, Matthew W Hoff-
man, Thomas Paine, Cı́an Hughes, Utsav Prabhu, Hank
Liao, Hasim Sak, Kanishka Rao, Lorrayne Bennett,
et al., “Large-scale visual speech recognition,” arXiv
preprint arXiv:1807.05162, 2018.

[7] Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R Henry, Robert Bradshaw, and
Nathan Weizenbaum, “Flumejava: easy, efficient data-
parallel pipelines,” ACM Sigplan Notices, vol. 45, no. 6,
pp. 363–375, 2010.

[8] Hank Liao, Erik McDermott, and Andrew Senior,
“Large scale deep neural network acoustic modeling
with semi-supervised training data for youtube video
transcription,” in 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding. IEEE, 2013,
pp. 368–373.

[9] Shafayat Ahmed, Nafis Sadeq, Sudipta Saha Shubha,
Md Nahidul Islam, Muhammad Abdullah Adnan, and
Mohammad Zuberul Islam, “Preparation of bangla
speech corpus from publicly available audio & text,” in
Proceedings of The 12th Language Resources and Eval-
uation Conference, 2020, pp. 6586–6592.

[10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21–
37.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al., “A density-based algorithm for discovering
clusters in large spatial databases with noise.,” in Kdd,
1996, vol. 96, pp. 226–231.

