

 FINAL REPORT

CSE 406 : Computer Security Sessional
Attack Tools Implementation : Ping Flood Attack

─

Md. Mohaiminul Islam
Sec - B, Group - ​03
St ID : ​1505078
CSE, BUET

 1

Overview
In the design proposal three attack strategies were proposed

● Regular uncontrolled ping flood
● Reflected attack using spoofed source addresses
● Amplification attack using broadcast

In this project we gradually implemented these attack strategies each of which improves on
the weakness/fault of the previous strategy.

Implementation Tools
To implement this attack we developed our own version of the ping application

which is by default present in most OS. This tool consists of a single ​python ​script named
ping.py​ which takes a target IP address as command line input . After that the programme
constructs an ICMP ‘echo’ request packet with the target address as destination ,some
garbage payload and continuously pings the target IP address without waiting for a reply.

To verify and visualize the attack effects other third party applications such as-
Wireshark, Iptraf & tcpdump were used. We also used virtnet and Oracle vBox to create a
virtual network.

Phase One : Tool Validation and Uncontrolled Ping Flood(Demo)
To see if our tool works properly we use two cloned images of the seed ubuntu.

We run the ​ping.py​ script from one image using the IP address(192.168.0.107) of the other.

 Fig1: Attacker screen after running ping.py

 2

If we run the command in the victim machine:

$sudo tcpdump -n -t -i enp0s3 ‘icmp’

We can listen to all incoming and outgoing ICMP traffic at the network interface
enp0s3(192.168.0.107).

 Fig2: Listening to incoming ICMP traffic at victim’s network interface

After that we use wireshark to verify the packet contents on victim machine.

 Fig3: As expected wireshark
shows abnormal traffic at the
enp0s3 network adapter.

 3

Fig4 : viewing packet contents via wireshark.

 Phase Two: Experimenting on a virtual network
To test the potency of our attack we create a virtual network in Oracle virtualbox

and test our tool.

Local Environment Setup :
To create this network we first created a ​base ​virtual machine with minimal

functionalities and networking to minimize RAM consumption. After that, we clone this
virtual image to create 8 different virtual machines which will act as 8 nodes in our
network.

Topology:
This is the topology of our virtual network-

It has 8 nodes of which 2 are configured to be routers(nodes 2 &7) , thus creating three
different subnets.

Subnet a = nodes 1,2 (address 192.168.1.0)

Subnet b = nodes 2,3,4,5,6,7 (address 192.168.2.0)

Subnet c= nodes 7,8 (address 192.168.3.0)

 4

Fig5 : Virtual Network topology

To initialize this we run a topology26.cmd script from available topologies in virtnet
repository.

Setup Nodes and Links :
A ping flooding DoS attack aims to overflow a link leading to the target, so data from

normal users to the target will be dropped or significantly delayed. Overflowing a link
means sending enough data across the link such that the full link capacity is utilized. In
real-life, the link from the target network to their ISP, or a link within the target network, is
that which is under attack. If the link has a high capacity (multiple Gb/s), then to utilize the
capacity, thousands of computers must be sending data at a very high rate towards the
target. Slaves, reflectors and amplification are usually required.

In our virtual network we only have several nodes. Therefore to overflow the link to
the target (from router node 7 to target node 8), we need the capacity of that link to be
quite low. VirtualBox emulates the network links, but by default doesn't set a link capacity
or date rate. The speed at which two virtual nodes can exchange data across a link varies,
and depends on factors such as host CPU, disk and the driver used for the virtual network
interfaces. Therefore we need to explicitly set the link capacity, at least between node 7 and
node 8. To do so, we will use a Linux traffic control program, ​tc ​. We can use ​tc ​to emulate
link characteristics like data rate (capacity), delay, jitter and packet drops.

tc ​operates on the outgoing link, and therefore to set the capacity of the link in both
directions between node 7 and 8, we need to apply the commands on both nodes. For the
demo we will set the capacity to 100,000 bits per second (100 kb/s). This is low enough such
that we can easily overflow with a few nodes sending pings. First node 7:

 5

network@node7​:~$ sudo tc qdisc add dev eth2 root handle 1:0 htb default 10

network@node7​:~$ sudo tc class add dev eth2 parent 1:0 classid 1:10 htb rate 100000

And now node 8 (the only difference between the commands on the nodes is the interface,
eth2 ​on node 7 and ​eth1 ​on node 8):

network@node7​:~$ sudo tc qdisc add dev eth1 root handle 1:0 htb default 10

network@node7​:~$ sudo tc class add dev eth1 parent 1:0 classid 1:10 htb rate 100000

Turn Off Security Features in the Linux Kernel ​ :
The Linux kernel includes features to prevent (or at least make very difficult) ping

flooding attacks. Therefore to see the attack in action, we needed to disable these security
features.

1. ​when acting as a router, the Linux kernel does not allow packets originating from one of
its subnets, but with a fake source address, to be forwarded to another subnet. The feature
is called ​Reverse Path Filtering​ . We needed to disable this feature on the routers in the
network (nodes 2 and 7). We did this by turning off the rp_filter kernel parameter for both
interfaces, eth1 and eth2, on each router.

network@node2:~$ ​sudo sysctl net.ipv4.conf.eth1.rp_filter=0

net.ipv4.conf.eth1.rp_filter = 0

network@node2:~$ ​sudo sysctl net.ipv4.conf.eth2.rp_filter=0

net.ipv4.conf.eth2.rp_filter = 0

network@node2:~$ ​sudo /etc/init.d/networking restart

Similar approach for node 7.

Next, in some attacks, We want one node to ping the broadcast address, so the ping is sent
to all nodes in the subnet. However the Linux kernel is configured to ignore ping

 6

broadcasts (i.e. not reply to Echo requests to the broadcast address). We need to accept
these ping messages, at least on the nodes in the same subnet as the source. For the demo
of ping broadcast, we used node 3 to broadcast to the subnet, including nodes 4, 5 and 6.
Therefore on nodes 4, 5 and 6 we turned off the icmp_echo_ignore_broadcasts kernel
parameter off .

network@node4:~$​sudo sysctl net.ipv4.icmp_echo_ignore_broadcasts=0

net.ipv4.icmp_echo_ignore_broadcasts = 0

Similar for nodes 3,5,6.

 Phase Three : Reflector Attack Using Spoofed Source Address
Most of the routers of today will detect a malicious node directly trying to flood a link by
sending ping packets and drop those packets. The victim can also analyze the packet to find
out the attackers IP. So , It is useful to indirectly attack the victim by setting source IP
address in the ICMP packet to the victim’s address. Then, some non-malicious node accepts
the packet they would send the corresponding ‘ICMP echo reply’ to our target victim. Using
this scheme we can remain undetectable and still manage to flood the victim’s inbound
link.

For demonstration we spoofed the source IP Address of the constructed ICMP echo
request packets and set it to the victim’s(node 8) IP address(192.168.3.31) . Now set the
destination address to some non malicious node such as node4(192.168.2.22). We can see
when node4 receives ping it immediately sends the corresponding reply to the node8.

Fig6 : The Attacker(node1) and the innocent node(node4)

 7

Fig7: The attacker(node1) and the victim(node7) screens

From Fig7 we clearly see that though the attacker(node1) is sending the ping requests the
replies are being sent to the victim(node8) from node4.

Again we previously set the link capacity between node7 and node8 to 100Kbps. So
If we monitor IP traffic at node7 we will see that it is receiving packets at great speed but
can’t transmit them to node8 at the same speed

 8

Fig8 : IP Traffic at node7 router

because the link between node7 and node8 (i.e. node 7 ‘s eth2 network interface is linked
to node 8’s eth1 interface) is at maximum flow.

Node7 is a router and this means incoming packets for node8 are being dropped by the
subnet’s router. This is the main theme of a DoS attack and thus proves the success of our
attack.

Phase Four: Amplification Attack Using Broadcasts
If we want to overflow the targets inbound link without exhausting our own resources a
good way is to use amplification attacks via broadcasts. Here we broadcast a ICMP echo
request message with victim’s address as source address. So all the nodes in the subnet
will receive this message and reply together towards victim.

For demonstration we perform broadcast amplification attack from
node3(192.168.2.21). This sends ping requests to nodes 4,5,6 (192.168.2.22, 192.168.2.23,
192.168.2.24 respectively) with target’s address as spoofed source address. This easily
overwhelms the target’s inbound link and causes packets to drop at the router.

Fig 9 : broadcasting ping messages to the subnet

 9

 Fig10 : All other nodes in the subnet receive ping and reply to victim(node8)

 Fig11: Victim(node8) receiving ping replies from all the nodes in the subnet.

 10

Fig 12 :As expected target’s inbound link in overflowing, packets dropped at router

Conclusion
The goal of Denial of Service(DoS) attacks is to block networking services to

one or more targets . As we have clearly simulated in the virtual network that our
implemented tool overflows some specific target’s inbound link restricting their network
service . This leads us to believe our experiments were successful and the attack was
implemented as proposed.

